Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Qualitative and quantitative analysis of human herpesviruses in chronic and acute B cell lymphocytic leukemia and in multiple myeloma

Abstract

Real-time quantitative polymerase chain reaction (qPCR) was used to quantify viral loads of human herpesviruses (HHVs) at diagnosis in 61 samples of malignant B cells: 21 chronic lymphocytic leukemia (B-CLL), 29 acute lymphoblastic leukemia (B-ALL) and 11 multiple myeloma (MM); control samples were blasts from 16 acute myeloid leukemia (AML) and 24 blood or bone marrow samples from healthy donors. The majority of samples from healthy donors and patients (B-ALL, B-CLL or AML, but not MM) was positive for EBV and contained <100 ebv copies/100 ng dna. ebv loads were occasionally high (>500 copies/100 ng DNA) in B-ALL (2/16) and in B-CLL (2/21) samples. The fractions of samples positive for HHV-8 and HHV-6A, less than 10% for MM patients, were high for adults with B-ALL (18.8% HHV-8+, 43.8% HHV-6A+) or B-CLL (28.6% HHV-8+, 52.4% HHV-6A+). B-ALL, B-CLL and MM samples were rarely positive for HHV-6B and HHV-7. Lastly, 75% of B-ALL samples were positive for CMV, and CMV loads were significantly higher in B-ALL samples than in MM, B-CLL or AML samples. We also used PCR with consensus-degenerate hybrid oligonucleotide primers (CODEHOP) to look for novel HHVs in B cell samples: no sequence indicative of a new HHV was detected. Altogether, the data indicate that the presence of multiple HHVs, including EBV and CMV at high loads, is not rare in B-ALL and B-CLL cell samples. Future prospective studies should determine whether patients with high EBV/CMV loads at diagnosis in tumor samples face a higher risk of delayed hematological recovery, virus-related complications or relapse.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Parsonnet, J (ed.)Microbes and malignancy. Infection as a cause of human cancers, Oxford University Press: New York (1999).

    Google Scholar 

  2. Ferreira, OC Jr, Planelles, V & Rosenblatt, JD Human T-cell leukemia viruses: epidemiology, biology, and pathogenesis. Blood Rev, (1997). 1, 91–104.

    Article  Google Scholar 

  3. Dammacco, F, Sansonno, D, Piccoli, C, Racanelli, V, d'Amore, FP & Lauletta, G The lymphoid system in hepatitis C virus infection: auto-immunity, mixed cryoglobulinemia, and overt B-cell malignancy. Semin Liver Dis, (2000). 20, 143–157.

    Article  CAS  PubMed  Google Scholar 

  4. Silvestri, F, Barillari, G, Fanin, R, Salmaso, F, Pipan, C, Falasca, E, Puglisi, F, Mariuzzi, L, Zaja, F, Infanti, L, Patriarca, F, Candoni, A, Rogato, A, Di Loreto, C, Botta, GA & Baccarani, M Impact of hepatitis C virus infection on clinical features, quality of life and survival of patients with lymphoplasmacytoid lymphoma/immunocytoma. Ann Oncol, (1998). 9, 499–504.

    Article  CAS  PubMed  Google Scholar 

  5. Oudejans, JJ, Jiwa, NM & Meijer, CJ Epstein–Barr virus in Hodgkin's disease: more than just an innocent bystander. J Pathol, (1997). 4, 353–356.

    Article  Google Scholar 

  6. Chang, Y, Cesarman, E, Pessin, MS, Lee, F, Culpepper, J, Knowles, DM & Moore, PS Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi's sarcoma. Science, (1994). 266, 1865–1869.

    Article  CAS  PubMed  Google Scholar 

  7. Cesarman, E, Chang, Y, Moore, PS, Said, JW & Knowles, DM Kaposi's sarcoma-associated Herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med, (1995). 332, 1186–1191.

    Article  CAS  PubMed  Google Scholar 

  8. Soulier, J, Grollet, L, Oksendler, E, Cacoub, P, Cazals-Atem, D, Babinet, P, d'Agay, MF, Clauvel, JP, Raphael, M, Degos, L & Sigaux, F Kaposi's sarcoma associated herpesvirus-like DNA sequences in multicentric Castleman's disease. Blood, (1995). 86, 1276–1280.

    CAS  PubMed  Google Scholar 

  9. Torelli, G, Marasca, R, Luppi, M, Selleri, L, Ferrari, S, Narni, F, Mariano, MT, Federico, M, Ceccherini-Nelli, L, Bendinelli, M, Montagnani, G, Montorsi, M & Artusi, T Human herpesvirus-6 in human lymphomas: identification of specific sequences in Hodgkin's lymphomas by polymerase chain reaction. Blood, (1991). 77, 2251–2258.

    CAS  PubMed  Google Scholar 

  10. Ohyashiki, JH, Abe, K, Ojima, T, Wang, P, Zhou, CF, Suzuki, A, Ohyashiki, K & Yamamoto, K Quantification of human herpesvirus-6 in healthy volunteers and patients with lymphoproliferative disorders by PCR-ELISA. Leukemia Res, (1999). 23, 625–630.

    Article  CAS  Google Scholar 

  11. Quackenbush, SL, Casey, RN, Murcek, RJ, Paul, TA, Work, TM, Limpus, CJ, Chaves, A, duToit, L, Vasconcelos Perz, J, Aguirre, AA, Spraker, TR, Horrocks, JA, Vermeer, LA, Balazs, GH & Casey, JW Quantitative analysis of Herpesviruses sequences from normal tissues and fibropapillomas of marine turtles with real-time PCR. Virology, (2001). 287, 105–111.

    Article  CAS  PubMed  Google Scholar 

  12. Lallemand, F, Désiré, N, Rozenbaum, W, Nicolas, J-C & Maréchal, V Quantitative analysis of human herpesvirus-8 viral load using a real-time PCR assay. J Clin Microbiol, (2000). 38, 1404–1408.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. VanDevanter, DR, Warrener, P, Bennett, L, Schultz, ER, Coulter, S, Garber, RL & Rose, TM Detection and analysis of diverse herpes viral species by consensus primer PCR. J Clin Microbiol, (1996). 34, 1666–1671.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Rose, TM, Schultz, ER, Henikoff, JG, Pietrokovski, S, McCallum, CM & Henikoff, S Consensus-degenerate hybrid oligonucleotide primers for amplification of distantly related sequences. Nucleic Acids Res, (1998). 26, 1628–1635.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Rose, TM, Strand, KB, Schultz, ER, Schaefer, G, Rankin, GW, Thouless, ME, Tsai, CC & Bosch, ML Identification of two homologs of the Kaposi's sarcoma-associated herpesvirus/human herpesvirus-8 in retroperitoneal fibromatosis of different macaque species. J Virol, (1997). 71, 4138–4144.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Quackenbush, SL, Work, TM, Balazs, GH, Casey, RN, Rovnak, J, Chaves, A, duToit, L, Baines, JD, Parrish, CR, Bowser, PR & Casey, JW Three closely related herpesviruses are associated with fibropapillomatosis in marine turtles. Virology, (1998). 246, 392–399.

    Article  CAS  PubMed  Google Scholar 

  17. Rovnak, J, Quackenbush, SL, Reyes, RA, Baines, JD, Parrish, CR & Casey, JW Detection of a novel bovine lymphotropic herpesvirus. J Virol, (1998). 72, 4237–4242.

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Donehower, LA, Bohannon, RC, Ford, RJ & Gibbs, RA The use of primers from highly conserved pol regions to identify uncharacterized retroviruses by the polymerase chain reaction. J Virol Methods, (1990). 28, 33–46.

    Article  CAS  PubMed  Google Scholar 

  19. Kinlen, LJ & Balkwill, A Infective cause of childhood leukemia and wartime population mixing in Orkney and Shetland, UK. Lancet, (2001). 357, 858

    Article  CAS  PubMed  Google Scholar 

  20. Greaves, M Childhood leukemia. Br Med J, (2002). 324, 283–287.

    Article  Google Scholar 

  21. European Group for the Immunological classification of acute Leukemias (EGIL) Bene, MC, Castoldi, G, Knapp, W, Ludwig, WD, Matutes, E, Orfao, A & van't Veer, MB Proposals for the immunological classification of acute leukemias. Leukemia, (1995). 9, 1783–1786.

    Google Scholar 

  22. Garand, R & Robillard, N Immunophenotypic characterization of acute leukemias and chronic lymphoproliferative disorders: practical recommendations and classification. Hematol Cell Ther, (1996). 38, 471–486.

    Article  CAS  PubMed  Google Scholar 

  23. Chevallier, P, Penther, D, Avet-Loiseau, H, Robillard, N, Ifrah, N, Mahé, B, Hamidou, M, Maisonneuve, H, Moreau, P, Jardel, H, Harousseau, J-L, Bataille, R & Garand, R CD38 expression and secondary 17p deletion are important prognostic factors in chronic lymphocytic leukemia. Br J Haematol, (2002). 116, 142–150.

    Article  CAS  PubMed  Google Scholar 

  24. Matutes, E, Owusu-Ankomah, K, Morilla, R, Marco, JG, Houlihan, A, Que, TH & Catovsky, D The immunological profile of B-cell disorders and proposal of a scoring system for the diagnosis of CLL. Leukemia, (1994). 8, 1640–1645.

    CAS  PubMed  Google Scholar 

  25. Challine, D, Roudot-Thoraval, F, Sarah, T, Laperche, L, Boisson, B, Mauberquez, S, Dubernet, F, Rigot, P, Lefrere, F, Mercier, B, Brossard, Y, Rouet, F, Girot, R, Loiseau, P, Girard, D, Claquin, J, Loty, B, Lerable, J, Mariotti, M, Pawlotsky, JM & Lefrere, JJ Seroprevalence of human herpesvirus 8 antibody in populations at high or low risk of transfusion, graft, or sexual transmission of viruses. Transfusion, (2001). 41, 1120–1125.

    Article  CAS  PubMed  Google Scholar 

  26. Lennett, ET, Blackbourne, DJ & Levy, JA Antibodies to HHV type 8 in the general population and in Kaposi's sarcoma patients. Lancet, (1996). 348, 858–861.

    Article  Google Scholar 

  27. Hermouet, S, Corre, I, Gassin, M, Bigot-Corbel, E, Sutton, CA & Casey, JW Implication of hepatitis C virus (HCV) and human herpesvirus-8 (HHV-8) in the pathogenesis of a case of aggressive primary plasma cell leukemia (PCL). N Engl J Med, (in press)

  28. Black, JB & Pellett, PE Human herpesvirus 7. Rev Med Virol, (1999). 9, 245–262.

    Article  CAS  PubMed  Google Scholar 

  29. Di Luca, D, Dolcetti, R, Mirandola, P, De Re, V, Seccherio, P, Carbone, A, Boiocchi, M & Cassai, E Human herpesvirus 6: a survey of presence and variant distribution in normal peripheral lymphocytes and lymphoproliferative disorders. J Infect Dis, (1994). 170, 211–215.

    Article  CAS  PubMed  Google Scholar 

  30. Luppi, M, Barozzi, P, Morris, C, Maiorana, A, Garber, R, Bonacorsi, G, Donelli, A, Marasca, R, Tabilio, A & Torelli, G Human herpesvirus 6 latently infects early bone marrow progenitors in vivo. J Virol, (1999). 73, 754–759.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Dominici, M, Luppi, M, Campioni, D, Lanza, F, Barozzi, P, Milani, R, Moretti, S, Nadali, G, Spanedda, R, Trovato, R, Torelli, G & Castoldi, G PCR with degenerate primers for highly conserved DNA polymerase gene of the herpesvirus family shows neiher human herpesvirus-8 nor a related variant in bone marrow stromal cells from multiple myeloma patients. Int J Cancer, (2000). 86, 76–82.

    Article  CAS  PubMed  Google Scholar 

  32. Pan, L, Milligan, L, Michaeli, J, Cesarman, E & Knowles, DM Polymerase-chain reaction detection of Kaposi's sarcoma-associated herpesvirus-optimized protocols and their application to myeloma. J Mol Diagn, (2001). 3, 32–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Erlach, KC, Podlech, J, Rojan, A & Reddehase, MJ Tumor control in a model of bone marrow transplantation and acute liver-infiltrating B-cell lymphoma: an unpredicted novel function of cytomegalovirus. J Virol, (2002). 76, 2857–2870.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vieira, J, O’Hearn, P, Kimball, L, Chandran, B & Corey, L Activation of Kaposi's sarcoma-associated herpesvirus (human herpesvirus 8) lytic replication by human cytomegalovirus. J Virol, (2001). 75, 1378–1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Galloway, DA & McDougall, JK The oncogenic potential of herpes simplex viruses: evidence for a ‘hit-and-run’ mechanism. Nature, (1983). 302, 21–24.

    Article  CAS  PubMed  Google Scholar 

  36. Shen, Y, Zhu, H & Shenk, T Human cytomegalovirus IE1 and IE2 proteins are mutagenic and mediate ‘hit-and-run’ oncogenic transformation in cooperation with the adenovirus E1A proteins. Proc Natl Acad Sci USA, (1997). 94, 3341–3345.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Luppi, M, Barozzi, P, Schulz, TF, Setti, G, Staskus, K, Trovato, R, Narni, F, Donelli, A, Maiorana, A, Marasca, R, Sandrini, S & Torelli, G Bone marrow failure associated with human herpesvirus-8 infection after transplantation. N Engl J Med, (2000). 343, 1378–1385.

    Article  CAS  PubMed  Google Scholar 

  38. Luppi, M, Barozzi, P, Schulz, TF, Trovato, R, Setti, G, Donelli, A, Narni, F, Sheldon, J, Marasca, R & Torelli, G Nonmalignant disease associated with human herpesvirus-8 reactivation in patients who have undergone autologous peripheral blood stem cell transplantation. Blood, (2000). 96, 2355–2357.

    CAS  PubMed  Google Scholar 

  39. Ljungman, P, Wang, FZ, Clark, DA, Emery, VC, Remberger, M, Ringden, O & Linde, A High levels of human herpesvirus 6 DNA in peripheral blood leucocytes are correlated to platelet engraftment and disease in allogenic stem cell transplant patients. Br J Haematol, (2000). 111, 774–781.

    CAS  PubMed  Google Scholar 

  40. Broers, AE, van Der Holt, R, van Esser, JW, Gratama, JW, Henzen-Logman, S, Kuenen-Boumeester, V, Lowenberg, B & Cornelissen, JJ Increased transplant-related morbidity and mortality in CMV-seropositive patients despite highly effective prevention of CMV disease after allogenic T-cell depleted stem cell transplantation. Blood, (2000). 95, 2240–2245.

    CAS  PubMed  Google Scholar 

  41. Cornelissen, JJ, Carston, M, King, R, Dekker, AW, Lowenberg, B & Anasetti, C Unrelated marrow transplantation for adult patients with poor-risk acute lymphoblastic leukemia: strong graft-versus-leukemia effect and risk factors determining outcome. Blood, (2001). 97, 1572–1577.

    Article  CAS  PubMed  Google Scholar 

  42. van Esser, JW, van der Holt, B, Meijer, E, Niester, HG, Trenschel, R, Thijsen, SF, van Loon, AM, Frassoni, F, Bacigalupo, A, Schaefer, UW, Osterhaus, AD, Gratama, JW, Lowenberg, B, Verdonck, LF & Cornelissen, JJ Epstein–Barr virus (EBV) reactivation is a frequent event after allogenic stem cell transplantation (SCT) and quantitatively predicts EBV-lymphoproliferative disease following T-cell-depleted SCT. Blood, (2001). 98, 972–978.

    Article  CAS  PubMed  Google Scholar 

  43. Nanbo, A, Inoue, K, Adachi-Takasawa, K & Takada, K Epstein–Barr virus RNA confers resistance to interferon-α-induced apoptosis in Burkitt's lymphoma. EMBO J, (2002). 21, 954–965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Gao, SJ, Kingsley, L, Hoover, DR, Spira, TJ, Rinaldo, CR, Saah, A, Phair, J, Detels, R, Parry, P, Chang, Y & Moore, P Seroconversion to antibodies against Kaposi's sarcoma-associated herpesvirus-related latent nuclear antigens before the development of Kaposi's sarcoma. N Engl J Med, (1996). 335, 233–241.

    Article  CAS  PubMed  Google Scholar 

  45. Hisada, M, Biggar, RJ, Greene, MH, Fraumeni, JF & Travis, LB Solid tumors after chronic lymphocytic leukemia. Blood, (2001). 98, 1979–1981.

    Article  CAS  PubMed  Google Scholar 

  46. MacKenzie, J, Gallagher, A, Clayton, RA, Perry, J, Eden, OB, Ford, AM, Greaves, MF & Jarrett, RF Screening for herpesvirus genomes in common acute lymphoblastic leukemia. Leukemia, (2001). 15, 415–421.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Mrs Danielle Pineau and Mr Yves Garreau for storing and sorting patient samples, to Mr Thomas A Paul and Mrs Rufina N Casey for technical help and advice, and to our colleagues from the Department of Hematology of the Centre Hospitalier Universitaire de Nantes, France and the Pediatric Department of the District Hospital of Faro, Portugal, for providing blood and BM samples. SH was supported by a grant from NATO. RJG was supported by NIH training grant No. T2ES07052E.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hermouet, S., Sutton, C., Rose, T. et al. Qualitative and quantitative analysis of human herpesviruses in chronic and acute B cell lymphocytic leukemia and in multiple myeloma. Leukemia 17, 185–195 (2003). https://doi.org/10.1038/sj.leu.2402748

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2402748

Keywords

This article is cited by

Search

Quick links