Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Coculture and transplant of purified CD34+Lin and CD34Lin cells reveals functional interaction between repopulating hematopoietic stem cells

Abstract

The human hematopoietic stem cell compartment is comprised of repopulating CD34+ and CD34 cells. The interaction between these subsets with respect to their reconstitution capacity in vivo remains to be characterized. Here, lineage-depleted (Lin) human CD34+ and CD34 hematopoietic cells were isolated from human male and female umbilical cord blood (CB) and transplanted into immune-deficient NOD/SCID EMVnull mice, thereby allowing the use of human and Y-chromosome-specific DNA sequences to discriminate human reconstitution contributed by CD34+ vs CD34 repopulating stem cells. Although cultured human CB CD34Lin cells transplanted alone possessed only minimal repopulating capacity, with 15% of mice achieving low levels of engraftment, transplantation of cocultured male CD34Lin cells with female CD34+Lin cells demonstrated human repopulation with a contribution from CD34Lin-derived progeny in 80% of the recipients. After coculture and transplantation, male CD34Lin cells gave rise to primitive CD34+CD38 cells isolated in vivo, which demonstrated clonogenic progenitor function into multiple lineages. Taken together, our study indicates that the presence of CD34+Lin cells in coculture enhanced the low repopulating function of human CD34Lin cells in vivo. We propose that CD34+Lin and CD34Lin cells represent phenotypically distinct, but related cell types that exhibit unique and previously unappreciated functional interaction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Berenson RJ, Andrews RG, Bensinger WI, Kalamasz D, Knitter G, Buckner CD et al. Antigen CD34+ marrow cells engraft lethally irradiated baboons. J Clin Invest 1988; 81: 951–955.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Civin CI, Strauss LC, Brovall C, Fackler MJ, Schwartz JF, Shaper JH . Antigenic analysis of hematopoiesis. III. A hematopoietic progenitor cell surface antigen defined by a monoclonal antibody raised against KG-1a cells. J Immunol 1984; 133: 157–165.

    CAS  PubMed  Google Scholar 

  3. Civin CI, Trischmann T, Kadan NS, Davis J, Noga S, Cohen K et al. Highly purified CD34−positive cells reconstitute hematopoiesis. J Clin Oncol 1996; 14: 2224–2233.

    Article  CAS  PubMed  Google Scholar 

  4. Dao MA, Nolta JA . CD34: to select or not to select? That is the question. Leukemia 2000; 14: 773–776.

    Article  CAS  PubMed  Google Scholar 

  5. Bhatia M, Wang JCY, Kapp U, Bonnet D, Dick JE . Purification of primitive human hematopoietic cells capable of repopulating immune-deficient mice. Proc Natl Acad Sci USA 1997; 94: 5320–5325.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Dick JE, Bhatia M, Gan O, Kapp U, Wang JC . Assay of human stem cells by repopulation of NOD/SCID mice. Stem Cells 1997; 15 (Suppl. 1): 199–203.

    Article  PubMed  Google Scholar 

  7. Larochelle A, Vormoor J, Hanenberg H, Wang JC, Bhatia M, Lapidot T et al. Identification of primitive human hematopoietic cells capable of repopulating NOD/SCID mouse bone marrow: implications for gene therapy. Nat Med 1996; 2: 1329–1337.

    Article  CAS  PubMed  Google Scholar 

  8. Bhatia M, Bonnet D, Murdoch B, Gan OI, Dick JE . A newly discovered class of human hematopoietic cells with SCID-repopulating activity. Nat Med 1998; 4: 1038–1045.

    Article  CAS  PubMed  Google Scholar 

  9. Goodell MA, Brose K, Paradis G, Conner AS, Mulligan RC . Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183: 1797–1806.

    Article  CAS  PubMed  Google Scholar 

  10. Goodell MA, Rosenzweig M, Kim H, Marks DF, DeMaria M, Paradis G et al. Dye efflux studies suggest that hematopoietic stem cells expressing low or undetectable levels of CD34 antigen exist in multiple species. Nat Med 1997; 3: 1337–1345.

    Article  CAS  PubMed  Google Scholar 

  11. Osawa M, Hanada K, Hamada H, Nakauchi H . Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996; 273(5272): 242–245.

    Article  CAS  PubMed  Google Scholar 

  12. Zanjani ED, Almeida-Porada G, Livingston AG, Flake AW, Ogawa M . Human bone marrow CD34− cells engraft in vivo and undergo multilineage expression that includes giving rise to CD34+ cells. Exp Hematol 1998; 26: 353–360.

    CAS  PubMed  Google Scholar 

  13. Zhao Y, Lin Y, Zhan Y, Yang G, Louie J, Harrison DE et al. Murine hematopoietic stem cell characterization and its regulation in BM transplantation. Blood 2000; 96: 3016–3022.

    CAS  PubMed  Google Scholar 

  14. Sato T, Laver JH, Ogawa M . Reversible expression of CD34 by murine hematopoietic stem cells. Blood 1999; 94: 2548–2554.

    CAS  PubMed  Google Scholar 

  15. Prochazka M, Gaskins HR, Shultz LD, Leiter EH . The nonobese diabetic scid mouse: model for spontaneous thymomagenesis associated with immunodeficiency. Proc Natl Acad Sci USA 1992; 89: 3290–3294.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Serreze DV, Chapman HD, Varnum DS, Hanson MS, Reifsnyder PC, Richard SD et al. B lymphocytes are essential for the initiation of T cell-mediated autoimmune diabetes: analysis of a new ‘speed congenic’ stock of NOD.Ig mu null mice. J Exp Med 1996; 184: 2049–2053.

    Article  CAS  PubMed  Google Scholar 

  17. Bhatia M, Bonnet D, Kapp U, Wang JC, Murdoch B, Dick JE . Quantitative analysis reveals expansion of human hematopoietic repopulating cells after short-term ex vivo culture. J Exp Med 1997; 186: 619–624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Hogan CJ, Shpall EJ, McNulty O, McNiece I, Dick JE, Shultz LD et al. Engraftment and development of human CD34(+)-enriched cells from umbilical cord blood in NOD/LtSz-scid/scid mice. Blood 1997; 90: 85–96.

    CAS  PubMed  Google Scholar 

  19. Arnemann J, Epplen JT, Cooke HJ, Sauermann U, Engel W, Schmidtke J . A human Y-chromosomal DNA sequence expressed in testicular tissue. Nucleic Acids Res 1987; 15: 8713–8724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Mangioni S, Balduzzi A, Rivolta A, Rovelli A, Nesi F, Rossi V et al. Long-term persistence of hemopoietic chimerism following sex-mismatched bone marrow transplantation. Bone Marrow Transplant 1997; 20: 969–973.

    Article  CAS  PubMed  Google Scholar 

  21. Wang JC, Doedens M, Dick JE . Primitive human hematopoietic cells are enriched in cord blood compared with adult bone marrow or mobilized peripheral blood as measured by the quantitative in vivo SCID-repopulating cell assay. Blood 1997; 89: 3919–3924.

    CAS  PubMed  Google Scholar 

  22. Vormoor J, Lapidot T, Pflumio F, Risdon G, Patterson B, Broxmeyer HE et al. Immature human cord blood progenitors engraft and proliferate to high levels in severe combined immunodeficient mice. Blood 1994; 83: 2489–2497.

    CAS  PubMed  Google Scholar 

  23. Serreze DV, Leiter EH, Hanson MS, Christianson SW, Shultz LD, Hesselton RM et al. Emv30null NOD-scid mice. An improved host for adoptive transfer of autoimmune diabetes and growth of human lymphohematopoietic cells. Diabetes 1995; 44: 1392–1398.

    Article  CAS  PubMed  Google Scholar 

  24. Gallacher L, Murdoch B, Wu DM, Karanu FN, Keeney M, Bhatia M . Isolation and characterization of human CD34(−)Lin(−) and CD34(+)Lin(−) hematopoietic stem cells using cell surface markers AC133 and CD7. Blood 2000; 95: 2813–2820.

    CAS  PubMed  Google Scholar 

  25. Guenechea G, Gan OI, Inamitsu T, Dorrell C, Pereira DS, Kelly M et al. Transduction of human CD34+ CD38− bone marrow and cord blood-derived SCID-repopulating cells with third-generation lentiviral vectors. Mol Ther 2000; 1: 566–573.

    Article  CAS  PubMed  Google Scholar 

  26. Dao MA, Arevalo J, Nolta JA . Reversibility of CD34 expression on human hematopoietic stem cells that retain the capacity for secondary reconstitution. Blood 2003; 101: 112–118.

    Article  CAS  PubMed  Google Scholar 

  27. Karanu FN, Gallacher L, Bhatia M . Differential response of primitive human CD34neg and CD34pos hematopoietic cells to the Notch ligand Jagged-1. Leukemia 2003 (in press).

  28. Martinez C, Urbano-Ispizua A, Rozman C, Marin P, Rovira M, Sierra J et al. Immune reconstitution following allogeneic peripheral blood progenitor cell transplantation: comparison of recipients of positive CD34+ selected grafts with recipients of unmanipulated grafts. Exp Hematol 1999; 27: 561–568.

    Article  CAS  PubMed  Google Scholar 

  29. Harrison DE, Astle CM . Short- and long-term multilineage repopulating hematopoietic stem cells in late fetal and newborn mice: models for human umbilical cord blood. Blood 1997; 90: 174–181.

    CAS  PubMed  Google Scholar 

  30. Link H, Arseniev L, Bahre O, Kadar JG, Diedrich H, Poliwoda H . Transplantation of allogeneic CD34+ blood cells. Blood 1996; 87: 4903–4909.

    CAS  PubMed  Google Scholar 

  31. Peters C, Matthes-Martin S, Fritsch G, Holter W, Lion T, Witt V et al. Transplantation of highly purified peripheral blood CD34+ cells from HLA-mismatched parental donors in 14 children: evaluation of early monitoring of engraftment. Leukemia 1999; 13: 2070–2078.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Schiller G, Vescio R, Freytes C, Spitzer G, Lee M, Wu CH et al. Autologous CD34-selected blood progenitor cell transplants for patients with advanced multiple myeloma. Bone Marrow Transplant 1998; 21: 141–145.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Support for this research project was provided by a grant from the Multiple Organ Transplant Initiative, London Health Sciences Center, the Ontario Research and Development Challenge Fund in Xenotransplantation and the Canadian Institute of Health Research (CIHR) and a Canada Research Chair in Stem Cell Biology and Regenerative Medicine to M Bhatia, and a postdoctoral fellowship award from the CIHR for D Hess. In addition, we wish to recognize the technical assistance of Barbara Murdoch towards the completion of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Bhatia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hess, D., Karanu, F., Levac, K. et al. Coculture and transplant of purified CD34+Lin and CD34Lin cells reveals functional interaction between repopulating hematopoietic stem cells. Leukemia 17, 1613–1625 (2003). https://doi.org/10.1038/sj.leu.2403028

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403028

Keywords

This article is cited by

Search

Quick links