Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis

Abstract

The roles of the JAK/STAT, Raf/MEK/ERK and PI3K/Akt signal transduction pathways and the BCR-ABL oncoprotein in leukemogenesis and their importance in the regulation of cell cycle progression and apoptosis are discussed in this review. These pathways have evolved regulatory proteins, which serve to limit their proliferative and antiapoptotic effects. Small molecular weight cell membrane-permeable drugs that target these pathways have been developed for leukemia therapy. One such example is imatinib mesylate, which targets the BCR-ABL kinase as well as a few structurally related kinases. This drug has proven to be effective in the treatment of CML patients. However, leukemic cells have evolved mechanisms to become resistant to this drug. A means to combat drug resistance is to target other prominent signaling components involved in the pathway or to inhibit BCR-ABL by other mechanisms. Treatment of imatinib-resistant leukemia cells with drugs that target Ras (farnysyl transferase inhibitors) or with the protein destabilizer geldanamycin has proven to be a means to inhibit the growth of resistant cells. This review will tie together three important signal transduction pathways involved in the regulation of hematopoietic cell growth and indicate how their expression is dysregulated by the BCR-ABL oncoprotein.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18

Similar content being viewed by others

References

  1. Blalock WL, Weinstein-Oppenheimer C, Chang F, Hoyle PE, Wang XY, Algate PA et al. Signal transduction, cell cycle regulatory, and anti-apoptotic pathways regulated by IL-3 in hematopoietic cells: possible sites for intervention with anti-neoplastic drugs. Leukemia 1999; 13: 1109–1166.

    Article  CAS  PubMed  Google Scholar 

  2. Wang XY, McCubrey JA . Regulation of interleukin-3 expression in normal and autocrine transformed hematopoietic cells. Int J Oncol 1997; 10: 989–1001.

    CAS  PubMed  Google Scholar 

  3. McCubrey JA, May WS, Duronio V, Mufson A . Serine/threonine phosphorylation in cytokine signal transduction. Leukemia 2000; 14: 9–21.

    CAS  PubMed  Google Scholar 

  4. Lee Jr JT, McCubrey JA . The Raf/MEK/ERK signal transduction cascade as a target for chemotherapeutic intervention in leukemia. Leukemia 2002; 16: 486–507.

    CAS  PubMed  Google Scholar 

  5. Steelman LS, Algate PA, Blalock WL, Wang XY, Prevost KD, Hoyle PE et al. Oncogenic effects of overexpression of the interleukin-3 receptor on hematopoietic cells. Leukemia 1996; 10: 528–542.

    CAS  PubMed  Google Scholar 

  6. Wang XY, Steelman LS, McCubrey JA . Abnormal activation of cytokine gene expression by intracisternal type A particle transposition: effects of mutations, which result in autocrine growth stimulation and malignant transformation. Cytokines Cell Mol Ther 1997; 3: 3–19.

    CAS  PubMed  Google Scholar 

  7. McKearn JP, McCubrey JA, Fagg B . Enrichment of hematopoietic precursor cells and cloning of multipotential B lymphocyte precursors. Proc Natl Acad Sci USA 1985; 82: 7414–7418.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. McCubrey JA, Holland G, McKearn J, Risser R . Abrogation of factor-dependence in two IL-3-dependent cell lines can occur by two distinct mechanisms. Oncogene Res 1989; 4: 97–109.

    CAS  PubMed  Google Scholar 

  9. Algate PA, McCubrey JA . Autocrine transformation of hemopoietic cells resulting from cytokine message stabilization after intracisternal A particle transposition. Oncogene 1993; 8: 1221–1232.

    CAS  PubMed  Google Scholar 

  10. Mayo MW, Wang X-Y, Algate PA, Arana GF, Hoyle PE, Steelman LS et al. Synergy between AUUUA motif disruption and enhancer insertion results in autocrine transformation of interleukin-3-dependent hematopoietic cells. Blood 1995; 86: 3139–3150.

    CAS  PubMed  Google Scholar 

  11. Wang X-Y, McCubrey JA . Malignant transformation induced by cytokine genes: a comparison of the abilities of germline and mutated interleukin 3 genes to transform hematopoietic cells by transcriptional and posttranscriptional mechanisms. Cell Growth Differ 1996; 7: 487–500.

    CAS  PubMed  Google Scholar 

  12. Wang XY, McCubrey JA . Differential effects of retroviral long terminal repeats on interleukin-3 gene expression and autocrine transformation. Leukemia 1997; 11: 1711–1725.

    CAS  PubMed  Google Scholar 

  13. Wang X-Y, McCubrey JA . Characterization of proteins binding specifically to the interleukin 3 (IL-3) mRNA 3′ untranslated region in IL-3-dependent and autocrine transformed cells. Leukemia 12; 1998: 520–531.

    Google Scholar 

  14. McCubrey JA, Lee JT, Steelman LS, Blalock WL, Moye PW, Chang F et al. Interactions between the PI3K and Raf signaling pathways can result in the transformation of hematopoietic cells. Cancer Detect Prevent 2001; 25: 375–393.

    CAS  PubMed  Google Scholar 

  15. Moye PW, Blalock WL, Hoyle PE, Chang F, Franklin RA, Weinstein-Oppenheimer C et al. Synergy between Raf and BCL2 in abrogating the cytokine-dependency of hematopoietic cells. Leukemia 2000; 14: 1060–1079.

    CAS  PubMed  Google Scholar 

  16. Franklin RA, McCubrey JA . Kinases: positive and negative regulators of apoptosis. Leukemia 2000; 14: 2019–2034.

    CAS  PubMed  Google Scholar 

  17. Algate PA, Steelman LS, Mayo MW, Miyajima A, McCubrey JA . Regulation of the interleukin (IL-3) receptor by IL-3 in the fetal liver-derived FL5.12 cell line. Blood 1994; 83: 2459–2468.

    CAS  PubMed  Google Scholar 

  18. Lee Jr JT, McCubrey JA . Targeting the Raf kinase cascade in cancer therapy – novel molecular targets and therapeutic strategies. Expert Opin Targeted Ther 2002; 6: 659–678.

    CAS  Google Scholar 

  19. McCubrey JA, Wang XY, Algate PA, Blalock WL, Steelman LS . Autocrine transformation: cytokine model. In: Blagosklonny M (ed). Cell Cycle Checkpoints and Cancer. Austin, TX: Landes Bioscience Press, 2001, pp 1–16.

    Google Scholar 

  20. McCubrey JA, Blalock WL, Chang F, Steelman LS, Pohnert SC, Navolanic PM et al. Signal transduction pathways: cytokine model. In: Blagosklonny M (ed). Cell Cycle Checkpoints and Cancer. Austin, TX: Landes Bioscience Press, 2001, pp 17–51.

    Google Scholar 

  21. Ihle JN, Keller J, Oroszlan S, Henderson LE, Copeland TD, Fitch F et al. Biologic properties of homogeneous interleukin 3. I. Demonstration of WEHI-3 growth factor activity, mast cell growth factor activity, p cell-stimulating factor activity, colony-stimulating factor activity, and histamine-producing cell-stimulating factor activity. J Immunol 1983; 131: 282–287.

    CAS  PubMed  Google Scholar 

  22. Clark-Lewis I, Aebersold R, Ziltener H, Schrader JW, Hood LE, Kent SB . Automated chemical synthesis of a protein growth factor for hemopoietic cells, interleukin-3. Science 1986; 231: 134–139.

    CAS  PubMed  Google Scholar 

  23. Campbell HD, Ymer S, Fung MC, Young IG . Cloning and nucleotide sequence of the murine interleukin-3 gene. Eur J Biochem 1985; 150: 297–304.

    CAS  PubMed  Google Scholar 

  24. Yang YC, Ciarletta AB, Temple PA, Chung MP, Kovacic S, Witek-Giannotti JS et al. Human IL-3 (multi-CSF): identification by expression cloning of a novel hematopoietic growth factor related to murine IL-3. Cell 1986; 47: 3–10.

    CAS  PubMed  Google Scholar 

  25. Ziltener HJ, Fazekas de St Groth B, Leslie KB, Schrader JW . Multiple glycosylated forms of T cell-derived interleukin 3 (IL-3). Heterogeneity of IL-3 from physiological and nonphysiological sources. J Biol Chem 1988; 263: 14511–14517.

    CAS  PubMed  Google Scholar 

  26. Crapper RM, Clark-Lewis I, Schrader JW . The in vivo functions and properties of persisting cell-stimulating factor. Immunology 1984; 53: 33–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Banholzer R, Nair AP, Hirsch HH, Ming XF, Moroni C . Rapamycin destabilizes interleukin-3 mRNA in autocrine tumor cells by a mechanism requiring an intact 3′ untranslated region. Mol Cell Biol 1997; 17: 3254–3260.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Chang JM, Metcalf D, Lang RA, Gonda TJ, Johnson GR . Nonneoplastic hematopoietic myeloproliferative syndrome induced by dysregulated multi-CSF (IL-3) expression. Blood 1989; 73: 1487–1497.

    CAS  PubMed  Google Scholar 

  29. Cockayne DA, Bodine DM, Cline A, Nienhuis AW, Dunbar CE . Transgenic mice expressing antisense interleukin-3 RNA develop a B-cell lymphoproliferative syndrome or neurologic dysfunction. Blood 1994; 84: 2699–2710.

    CAS  PubMed  Google Scholar 

  30. Watanabe S, Itoh T, Arai K . JAK2 is essential for activation of c-fos and c-myc promoters and cell proliferation through the human granulocyte–macrophage colony-stimulating factor receptor in BA/F3 cells. J Biol Chem 1996; 271: 12681–12686.

    CAS  PubMed  Google Scholar 

  31. Tian SS, Tapley P, Sincich C, Stein RB, Rosen J, Lamb P . Multiple signaling pathways induced by granulocyte colony-stimulating factor involving activation of JAKs, STAT5, and/or STAT3 are required for regulation of three distinct classes of immediate early genes. Blood 1996; 88: 4435–4444.

    CAS  PubMed  Google Scholar 

  32. Doyle SE, Gasson JC . Characterization of the role of the human granulocyte–macrophage colony-stimulating factor receptor alpha subunit in the activation of JAK2 and STAT5. Blood 1998; 92: 867–876.

    CAS  PubMed  Google Scholar 

  33. Itoh T, Liu R, Yokota T, Arai KI, Watanabe S . Definition of the role of tyrosine residues of the common beta subunit regulating multiple signaling pathways of granulocyte–macrophage colony-stimulating factor receptor. Mol Cell Biol 1998; 18: 742–752.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Shen Y, Baker E, Callen DF, Sutherland GR, Willson TA, Rakar S et al. Localization of the human GM-CSF receptor beta chain gene (CSF2RB) to chromosome 22q12.2 → q13.1. Cytogenet Cell Genet 1992; 61: 175–177.

    CAS  PubMed  Google Scholar 

  35. Miyajima A, Mui AL, Ogorochi T, Sakamaki K . Receptors for granulocyte–macrophage colony-stimulating factor, interleukin-3, and interleukin-5. Blood 1993; 82: 1960–1974.

    CAS  PubMed  Google Scholar 

  36. Kremer E, Baker E, D'Andrea RJ, Slim R, Phillips H, Moretti PA et al. A cytokine receptor gene cluster in the X–Y pseudoautosomal region. Blood 1993; 82: 22–28.

    CAS  PubMed  Google Scholar 

  37. Gorman DM, Itoh N, Jenkins NA, Gilbert DJ, Copeland NG, Miyajima A . Chromosomal localization and organization of the murine genes encoding the beta subunits (AIC2A and AIC2B) of the interleukin 3, granulocyte/macrophage colony-stimulating factor, and interleukin 5 receptors. J Biol Chem 1992; 267: 15842–15848.

    CAS  PubMed  Google Scholar 

  38. Liu Y, Rohrschneider LR . The gift of Gab. FEBS Lett 2002; 515: 1–7.

    CAS  PubMed  Google Scholar 

  39. Inhorn RC, Carlesso N, Durstin M, Frank DA, Griffin JD . Identification of a viability domain in the granulocyte/macrophage colony-stimulating factor receptor beta-chain involving tyrosine-750. Proc Natl Acad Sci USA 1995; 92: 8665–8669.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Hara T, Ichihara M, Takagi M, Miyajima A . Interleukin-3 (IL-3) poor-responsive inbred mouse strains carry the identical deletion of a branch point in the IL-3 receptor alpha subunit gene. Blood 1995; 85: 2331–2336.

    CAS  PubMed  Google Scholar 

  41. Nishinakamura R, Nakayama N, Hirabayashi Y, Inoue T, Aud D, McNeil T et al. Mice deficient for the IL-3/GM-CSF/IL-5 beta c receptor exhibit lung pathology and impaired immune response, while beta IL3 receptor-deficient mice are normal. Immunity 1995; 2: 211–222.

    CAS  PubMed  Google Scholar 

  42. Robb L, Drinkwater CC, Metcalf D, Li R, Kontgen F, Nicola NA et al. Hematopoietic and lung abnormalities in mice with a null mutation of the common beta subunit of the receptors for granulocyte–macrophage colony-stimulating factor and interleukins 3 and 5. Proc Natl Acad Sci USA 1995; 92: 9565–9569.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. D'Andrea R, Rayner J, Moretti P, Lopez A, Goodall GJ, Gonda TJ et al. A mutation of the common receptor subunit for interleukin-3 (IL-3), granulocyte–macrophage colony-stimulating factor, and IL-5 that leads to ligand independence and tumorigenicity. Blood 1994; 83: 2802–2808.

    CAS  PubMed  Google Scholar 

  44. Hannemann J, Hara T, Kawai M, Miyajima A, Ostertag W, Stocking C . Sequential mutations in the interleukin-3 (IL3)/granulocyte–macrophage colony-stimulating factor/IL5 receptor β-subunit genes are necessary for the complete conversion to growth autonomy mediated by a truncated βc subunit. Mol Cell Biol 1995; 15: 2402–2412.

    CAS  PubMed  PubMed Central  Google Scholar 

  45. McCormack MP, Gonda TJ . Expression of activated mutants of the human interleukin-3/interleukin-5/granulocyte–macrophage colony-stimulating factor receptor common beta subunit in primary hematopoietic cells induces factor-independent proliferation and differentiation. Blood 1997; 90: 1471–1481.

    CAS  PubMed  Google Scholar 

  46. Testa U, Riccioni R, Militi S, Coccia E, Dtellacci E, Samoggia P et al. Elevated expression of IL-3Rα in acute myelogenous leukemia is associated with enhanced blast proliferation, increased cellularity, and poor prognosis. Blood 2002; 100: 2980–2988.

    CAS  PubMed  Google Scholar 

  47. Gale RE, Freeburn RW, Khwaja A, Chopra R, Linch DC . A truncated isoform of the human beta chain common to the receptors for granulocyte–macrophage colony-stimulating factor, interleukin-3 (IL-3), and IL-5 with increased mRNA expression in some patients with acute leukemia. Blood 1998; 91: 54–63.

    CAS  PubMed  Google Scholar 

  48. Silvennoinen O, Witthuhn BA, Quelle FW, Cleveland JL, Yi T, Ihle JN . Structure of the murine Jak2 protein-tyrosine kinase and its role in interleukin 3 signal transduction. Proc Natl Acad Sci USA 1993; 90: 8429–8433.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kisseleva T, Bhattacharya S, Braunstein J, Schindler CW . Signaling through the JAK/STAT pathway, recent advances and future challenges. Gene 2002; 285: 1–24.

    CAS  PubMed  Google Scholar 

  50. Krebs DL, Hilton DJ . SOCS proteins: negative regulators of cytokine signaling. Stem Cells 2001; 19: 378–387.

    CAS  PubMed  Google Scholar 

  51. Fujitani Y, Hibi M, Fukada T, Takahashi-Tezuka M, Yoshida H, Yamaguchi T et al. An alternative pathway for STAT activation that is mediated by the direct interaction between JAK and STAT. Oncogene 1997; 14: 751–761.

    CAS  PubMed  Google Scholar 

  52. Velazquez L, Mogensen KE, Barbieri G, Fellous M, Uze G, Pellegrini S . Distinct domains of the protein tyrosine kinase tyk2 required for binding of interferon-alpha/beta and for signal transduction. J Biol Chem 1995; 270: 3327–3334.

    CAS  PubMed  Google Scholar 

  53. Rodig SJ, Meraz MA, White JM, Lampe PA, Riley JK, Arthur CD et al. Disruption of the Jak1 gene demonstrates obligatory and nonredundant roles of the Jaks in cytokine-induced biologic responses. Cell 1998; 93: 373–383.

    CAS  PubMed  Google Scholar 

  54. Neubauer H, Cumano A, Muller M, Wu H, Huffstadt U, Pfeffer K . Jak2 deficiency defines an essential developmental checkpoint in definitive hematopoiesis. Cell 1998; 93: 397–409.

    CAS  PubMed  Google Scholar 

  55. Parganas E, Wang D, Stravopodis D, Topham DJ, Marine JC, Teglund S et al. Jak2 is essential for signaling through a variety of cytokine receptors. Cell 1998; 93: 385–395.

    CAS  PubMed  Google Scholar 

  56. Saharinen P, Silvennoinen O . The pseudokinase domain is required for suppression of the basal activity of Jak2 and Jak3 tyrosine kinase and for cytokine-inducible activation of signal transduction. J Biol Chem 2002; 277: 47954–47963.

    CAS  PubMed  Google Scholar 

  57. Gu J, Wang Y, Gu X . Evolutionary analysis for functional divergence of Jak protein kinase domain and tissue-specific genes. J Mol Evol 2002; 54: 725–733.

    CAS  PubMed  Google Scholar 

  58. Cools J, Peeters P, Voet T, Aventin A, Mecucci C, Grandchamp B et al. Genomic organization of human JAK2 and mutation analysis of its JH2-domain in leukemia. Cytogenet Cell Genet 1999; 85: 260–266.

    CAS  PubMed  Google Scholar 

  59. Ho JM, Beattie BK, Squire JA, Frank DA, Barber DL . Fusion of the ets transcription factor TEL to Jak2 results in constitutive Jak–Stat signaling. Blood 1999; 93: 4353–4362.

    Google Scholar 

  60. Barahmand-Pour F, Meinke A, Groner B, Decker T . Jak2–Stat5 interactions analyzed in yeast. J Biol Chem 1998; 273: 12567–12575.

    CAS  PubMed  Google Scholar 

  61. Luo H, Rose P, Barber D, Hanratty WP, Lee S, Roberts TM et al. Mutation in the Jak kinase JH2 domain hyperactivates Drosophila and mammalian Jak–Stat pathways. Mol Cell Biol 1997; 17: 1562–1571.

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Fujitani Y, Hibi M, Fukada T, Takahashi-Texuka M, Yoshida H, Yamaguchi T et al. An alternative pathway for STAT activation that is mediated by the direct interaction between JAK and STAT. Oncogene 1997; 20: 751–761.

    Google Scholar 

  63. Riedy MC, Dutra AS, Blake TB, Modi W, Lal BK, Davis J et al. Genomic sequence, organization, and chromosomal localization of human JAK3. Genomics 1996; 37: 57–61.

    CAS  PubMed  Google Scholar 

  64. Park SY, Saijo K, Takahashi T, Osawa M, Arase H, Hirayama N et al. Developmental defects of lymphoid cells in Jak3 kinase-deficient mice. Immunity 1995; 3: 771–782.

    CAS  PubMed  Google Scholar 

  65. Thomis DC, Berg LJ . The role of Jak3 in lymphoid development, activation, and signaling. Curr Opin Immunol 1997; 9: 541–547.

    CAS  PubMed  Google Scholar 

  66. Nosaka T, van Deursen JM, Tripp RA, Thierfelder WE, Witthuhn BA, McMickle AP et al. Defective lymphoid development in mice lacking Jak3. Science 1995; 270: 800–802.

    CAS  PubMed  Google Scholar 

  67. Leonard WJ . Role of Jak kinases and STATs in cytokine signal transduction. Int J Hematol 2001; 73: 271–277.

    CAS  PubMed  Google Scholar 

  68. Oakes SA, Candotti F, Johnston JA, Chen YQ, Ryan JJ, Taylor N et al. Signaling via IL-2 and IL-4 in JAK3-deficient severe combined immunodeficiency lymphocytes: JAK3-dependent and independent pathways. Immunity 1996; 5: 605–615.

    CAS  PubMed  Google Scholar 

  69. David M, Petricoin III E, Benjamin C, Pine R, Weber MJ, Larner AC . Requirement for MAP kinase (ERK2) activity in interferon alpha- and interferon beta-stimulated gene expression through STAT proteins. Science 1995; 269: 1721–1723.

    CAS  PubMed  Google Scholar 

  70. Winston LA, Hunter T . JAK2, Ras, and Raf are required for activation of extracellular signal-regulated kinase/mitogen-activated protein kinase by growth hormone. J Biol Chem 1995; 270: 30837–30840.

    CAS  PubMed  Google Scholar 

  71. Durbin JE, Hackenmiller R, Simon MC, Levy DE . Targeted disruption of mouse Stat1 gene results in compromised innate immunity to viral disease. Cell 1996; 84: 443–450.

    CAS  PubMed  Google Scholar 

  72. Simpson SJ, Shah S, Comiskey M, de Jong YP, Wang B, Mizoguchi E et al. T cell-mediated pathology in two models of experimental colitis depends predominantly on the interleukin 12/signal transducer and activator of transcription (Stat)-4 pathway, but is not conditional on interferon gamma expression by T cells. J Exp Med 1998; 187: 1225–1234.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Takeda K, Noguchi K, Shi W, Tanaka T, Matsumoto M, Yoshida N et al. Targeted disruption of the mouse Stat3 gene leads to early embryonic lethality. Proc Natl Acad Sci USA 1997; 94: 3801–3804.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Danial NN, Pernis A, Rothman PB . Jak–STAT signaling induced by the v-abl oncogene. Science 1995; 269: 1875–1877.

    CAS  PubMed  Google Scholar 

  75. Danial NN, Rothman P . JAK–STAT signaling activated by Abl oncogenes. Oncogene 2000; 19: 2523–2531.

    CAS  PubMed  Google Scholar 

  76. Migone TS, Lin JX, Cereseto A, Mulloy JC, O'Shea JJ, Franchini G et al. Constitutively activated Jak–STAT pathway in T cells transformed with HTLV-I. Science 1995; 269: 79–81.

    CAS  PubMed  Google Scholar 

  77. Weber-Nordt RM, Egen C, Wehinger J, Ludwig W, Gouilleux-Gruart V, Mertelsmann R et al. Constitutive activation of STAT proteins in primary lymphoid and myeloid leukemia cells and in Epstein–Barr virus (EBV)-related lymphoma cell lines. Blood 1996; 88: 809–816.

    CAS  PubMed  Google Scholar 

  78. Bromberg JF, Wrzeszczynska MH, Devgan G, Zhao Y, Pestell RG, Albanese C et al. Stat3 as an oncogene. Cell 1999; 98: 295–303.

    CAS  PubMed  Google Scholar 

  79. Masuhara M, Sakamoto H, Matsumoto A, Suzuki R, Yasukawa H, Mitsui K et al. Cloning and characterization of novel CIS family genes. Biochem Biophys Res Commun 1997; 239: 439–446.

    CAS  PubMed  Google Scholar 

  80. Hilton DJ, Richardson RT, Alexander WS, Viney EM, Willson TA, Sprigg NS et al. Twenty proteins containing a C-terminal SOCS box form five structural classes. Proc Natl Acad Sci USA 1998; 95: 114–119.

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Minamoto S, Ikegame K, Ueno K, Narazaki M, Naka T, Yamamoto H et al. Cloning and functional analysis of new members of STAT induced STAT inhibitor (SSI) family: SSI-2 and SSI-3. Biochem Biophys Res Commun 1997; 237: 79–83.

    CAS  PubMed  Google Scholar 

  82. Zhang JG, Farley A, Nicholson SE, Willson TA, Zugaro LM, Simpson RJ et al. The conserved SOCS box motif in suppressors of cytokine signaling binds to elongins B and C and may couple bound proteins to proteasomal degradation. Proc Natl Acad Sci USA 1999; 96: 2071–2076.

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Kamizono S, Hanada T, Yasukawa H, Minoguchi S, Kato R, Minoguchi M et al. The SOCS box of SOCS-1 accelerates ubiquitin-dependent proteolysis of TEL-JAK2. J Biol Chem 2001; 276: 12530–12538.

    CAS  PubMed  Google Scholar 

  84. Kamura T, Sato S, Haque D, Liu L, Kaelin Jr WG, Conaway RC et al. The Elongin BC complex interacts with the conserved SOCS-box motif present in members of the SOCS, ras, WD-40 repeat, and ankyrin repeat families. Genes Dev 1998; 12: 3872–3881.

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Matsumoto A, Seki Y, Kubo M, Ohtsuka S, Suzuki A, Hayashi I et al. Suppression of STAT5 functions in liver, mammary glands, and T cells in cytokine-inducible SH2-containing protein 1 transgenic mice. Mol Cell Biol 1999; 19: 6396–6407.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Endo TA, Masuhara M, Yokouchi M, Suzuki R, Sakamoto H, Mitsui K et al. A new protein containing an SH2 domain that inhibits JAK kinases. Nature 1997; 387: 921–924.

    CAS  PubMed  Google Scholar 

  87. Naka T, Narazaki M, Hirata M, Matsumoto T, Minamoto S, Aono A et al. Structure and function of a new STAT-induced STAT inhibitor. Nature 1997; 387: 924–929.

    CAS  PubMed  Google Scholar 

  88. Starr R, Willson TA, Viney EM, Murray LJ, Rayner JR, Jenkins BJ et al. A family of cytokine-inducible inhibitors of signalling. Nature 1997; 387: 917–921.

    CAS  PubMed  Google Scholar 

  89. Kile BT, Alexander WS . The suppressors of cytokine signaling (SOCS). Cell Mol Life Sci 2001; 58: 1135–1167.

    Google Scholar 

  90. Lindeman GJ, Wittlin S, Lada H, Naylor MJ, Santamaria M, Zhang JG et al. SOCS1 deficiency results in accelerated mammary gland development and rescues lactation in prolactin receptor-deficient mice. Genes Dev 2001; 15: 1631–1636.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Metcalf D, Alexander WS, Elefanty AG, Nicola NA, Hilton DJ, Starr R et al. Aberrant hematopoiesis in mice with inactivation of the gene encoding SOCS-1. Leukemia 1999; 13: 926–934.

    CAS  PubMed  Google Scholar 

  92. Starr R, Metcalf D, Elefanty AG, Brysha M, Willson TA, Nicola NA et al. Liver degeneration and lymphoid deficiencies in mice lacking suppressor of cytokine signaling-1. Proc Natl Acad Sci USA 1998; 95: 14395–14399.

    CAS  PubMed  PubMed Central  Google Scholar 

  93. Tanuma N, Nakamura K, Shima H, Kikuchi K . Protein-tyrosine phosphatase PTPepsilon C inhibits Jak–STAT signaling and differentiation induced by interleukin-6 and leukemia inhibitory factor in M1 leukemia cells. J Biol Chem 2000; 275: 28216–28221.

    CAS  PubMed  Google Scholar 

  94. Irie-Sasaki J, Sasaki T, Matsumoto W, Opavsky A, Cheng M, Welstead G et al. CD45 is a JAK phosphatase and negatively regulates cytokine receptor signalling. Nature 2001; 409: 349–354.

    CAS  PubMed  Google Scholar 

  95. Peeters P, Raynaud SD, Cools J, Wlodarska I, Grosgeorge J, Philip P et al. Fusion of Tel, the ETS-variant gene 6 (ETV6), to the receptor-associated kinase JAK2 as a result of +(9;12) in a lymphoid and t(9;15;12) in a myeloid leukemia. Blood 1997; 90: 2535–2540.

    CAS  PubMed  Google Scholar 

  96. Lacronique V, Boureaux A, Valle VD, Poirel H, Quang C, Mauchaffe M et al. A TEL-JAK2 fusion protein with constitutive kinase activity in human leukemia. Science 1997; 278: 1309–1312.

    CAS  PubMed  Google Scholar 

  97. Lacronique V, Boureaux A, Monni R, Duon S, Mauchauffe M, Mayeux P et al. Transforming proteins of chimeric TEL-Jak proteins in Ba/F3 cells. Blood 2000; 95: 2076–2083.

    CAS  PubMed  Google Scholar 

  98. Schwaller J, Frantsve J, Aster J, Williams IR, Tomasson MH, Ross TS et al. Transformation of hematopoietic cell lines to growth-factor independence and induction of a fatal myelo- and lymphoproliferative disease in mice by retrovirally transduced TEL/JAK2 fusion genes. EMBO J 1998; 17: 5321–5333.

    CAS  PubMed  PubMed Central  Google Scholar 

  99. Simmons HM, Oseth L, Nguyen P, O'Leary M, Conklin KF, Hirsch B . Cytogenetic and molecular heterogeneity of 7q36/12p13 rearrangements in childhood AML. Leukemia 2002; 16: 2408–2416.

    CAS  PubMed  Google Scholar 

  100. Hinz M, Lemke P, Anagnostopoulos I, Hacker C, Krappmann D, Mathas S et al. Nuclear factor κB-dependent gene expression profiling of Hodgkin's disease tumor cells, pathogenetic significance, and link to constitutive signal transducer and activator of transciption 5a activity. J Exp Med 2002; 196: 605–617.

    CAS  PubMed  PubMed Central  Google Scholar 

  101. Li L, Shaw PE . Autocrine-mediated activation of STAT3 correlates with cell proliferation in breast carcinoma lines. J Biol Chem 2002; 277: 17397–17405.

    CAS  PubMed  Google Scholar 

  102. Epling-Burnette PK, Liu JH, Catlett-Falcone R, Turkson J, Oshiro M, Kothaqpalli R et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl-1 expression. J Clin Invest 2001; 107: 351–362.

    CAS  PubMed  PubMed Central  Google Scholar 

  103. Gaemers IC, Vos HL, Volders HH, van der Valk SW, Hilkens J . A stat-responsive element in the promoter of the episialin/MUC1 gene is involved in its overexpression in carcinoma cells. J Biol Chem 2001; 276: 6191–6199.

    CAS  PubMed  Google Scholar 

  104. Chen G, Hohmeier HE, Newgard CB . Expression of the transcription factor STAT-1α in insulinoma cells protects against cytotoxic effects of multiple cytokines. J Biol Chem 2001; 276: 766–772.

    CAS  PubMed  Google Scholar 

  105. Demoulin JB, Uyttenhove C, Lejeune D, Mui A, Groner B, Renauld JC . STAT5 activation is required for interleukin-9-dependent growth and transformation of lymphoid cells. Cancer Res 2000; 60: 3971–3977.

    CAS  PubMed  Google Scholar 

  106. Lou W, Ni Z, Dyer, Tweardy DJ, Gao AC . Interleukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate 2000; 15: 239–242.

    Google Scholar 

  107. Fernandez A, Hamburger AW, Gerwin BI . Erb-2 kinase is required for constitutive stat 3 activation in malignant human lung epithelial cells. Int J Cancer 1999; 83: 564–570.

    Google Scholar 

  108. Bromberg J . Stat Proteins and oncogenesis. J Clin Invest 2002; 109: 1139–1142.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Schuringa JJ, Wojtachnio K, Hagens W, Vellenga E, Buys CH, Hofstra R et al. MEN2A-RET-induced cellular transformation by activation of STAT3. Oncogene 2001; 20: 5350–5358.

    CAS  PubMed  Google Scholar 

  110. Ning ZQ, Li J, McGuinness M, Arceci RJ . STAT3 activation is required for Asp(816) mutant c-Kit induced tumorigenicity. Oncogene 2001; 20: 4528–4536.

    CAS  PubMed  Google Scholar 

  111. Kube D, Holtick U, Vockerodt M, Ahmadi T, Haier B, Behrmann I et al. STAT3 is constitutively activated in Hodgkin cell lines. Blood 2001; 98: 762–770.

    CAS  PubMed  Google Scholar 

  112. Gao B, Shen X, Kunos G, Meng Q, Goldberg ID, Rosen EM et al. Constitutive activation of JAK–STAT3 signaling by BRCA1 in human prostate cancer cells. FEBS Lett 2001; 488: 179–184.

    CAS  PubMed  Google Scholar 

  113. Campbell CL, Guardiani R, Ollari C, Nelson BE, Quesenberry PJ, Savarese TM . Interleukin-11 receptor expression in primary ovarian carcinomas. Gynecol Oncol 2001; 80: 121–127.

    CAS  PubMed  Google Scholar 

  114. Buettner R, Mora LB, Jove R . Activated STAT signaling in human tumors provides novel molecular targets for therapeutic intervention. Clin Cancer Res 2002; 8: 945–954.

    CAS  PubMed  Google Scholar 

  115. Bowman T, Garcia R, Turkson J, Jove R . STATs in oncogenesis. Oncogene 2000; 19: 2474–2488.

    CAS  PubMed  Google Scholar 

  116. Onishi M, Nosaka T, Misawa K, Mui AL, Gorman D, McMahon M et al. Identification and characterization of a constitutively active STAT5 mutant that promotes cell proliferation. Mol Cell Biol 1998; 18: 3871–3879.

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Ariyoshi K, Nosaka T, Yamada K, Onishi M, Oka Y, Miyajima A et al. Constitutive activation of STAT5 by a point mutation in the SH2 domain. J Biol Chem 2000; 275: 24407–24413.

    CAS  PubMed  Google Scholar 

  118. Nosaka T, Kitamura T . Janus kinases (JAKs) and signal transducers and activators of transcription (STATs) in hematopoietic cells. Int J Hematol 2000; 71: 309–319.

    CAS  PubMed  Google Scholar 

  119. Chang F, Lee JT, Navolanic PM, Steelman JG, Blalock WL, Franklin RA et al. Involvement of PI3K/Akt pathway in cell cycle progression, apoptosis, and neoplastic transformation: a target for cancer chemotherapy. Leukemia 2003; 17: 590–603.

    CAS  PubMed  Google Scholar 

  120. Chang F, Steelman LS, Shelton JG, Lee JT, Navolanic PN, Blalock WL et al. Regulation of cell cycle progression and apoptosis by the Ras/Raf/MEK/ERK pathway. Int J Oncol 2003; 22: 469–480.

    CAS  PubMed  Google Scholar 

  121. Chang F, Steelman LS, Lee JT, Shelton JG, Navolanic PM, Blalock WL et al. Signal transduction mediated by the Ras/Raf/MEK/ERK pathway from cytokine receptors to transcription factors: potential targeting for therapeutic intervention. Leukemia 2003; 17: 1263–1293.

    CAS  PubMed  Google Scholar 

  122. van Laethem JL . Ki-ras oncogene mutations in chronic pancreatitis: which discriminating ability for malignant potential? Ann NY Acad Sci 1999; 880: 210–218.

    CAS  PubMed  Google Scholar 

  123. Watzinger F, Lion T . Ras family. Atlas Genet Cytogenet Oncol Haematol 1999. http://www.infobiogen.fr/services/chromcancer/Deep/ras.html.

  124. Schwartz RC, Stanton LW, Riley SC, Marcu KB, Witte ON . Synergism of v-myc and v-Ha-ras in the in vitro neoplastic progression of murine lymphoid cells. Mol Cell Biol 1986; 6: 3221–3231.

    CAS  PubMed  PubMed Central  Google Scholar 

  125. Yan J, Roy S, Apolloni A, Lane A, Hancock JF . Ras isoforms vary in their ability to activate Raf-1 and phosphoinositide 3-kinase. J Biol Chem 1998; 273: 24052–24056.

    CAS  PubMed  Google Scholar 

  126. Flotho C, Valcamonica S, Mach-Pascual S, Schmahl G, Corral L, Ritterbach J et al. RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia 1999; 13: 32–37.

    CAS  PubMed  Google Scholar 

  127. Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 2001; 97: 3589–3595.

    CAS  PubMed  Google Scholar 

  128. McCubrey JA, Steelman LS, Wang X-Y, Algate PA, Hoyle PE, White C et al. Differential effects of viral and cellular oncogenes on the growth factor-dependency of hematopoietic cells. Int J Onc 1995; 7: 295–310.

    CAS  Google Scholar 

  129. Malumbres M, Castro IPD, Hernández MI, Jiménez M, Corral T, Pellicer A . Cellular response to oncogenic ras involves induction of the Cdk4 and Cdk6 inhibitor p15INK4b. Mol Cell Biol 2000; 20: 2915–2925.

    CAS  PubMed  PubMed Central  Google Scholar 

  130. Hirakawa T, Ruley HE . Rescue of cells from ras oncogene-induced growth arrest by a second complementing concogene. Proc Natl Acad Sci USA 1988; 85: 1519–1523.

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Bar-Sagi D, Feramisco JR . Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation. Cell 1985; 42: 841–848.

    CAS  PubMed  Google Scholar 

  132. Benito M, Porras A, Nebreda AR, Santos E . Differentiation of 3T3-L1 fibroblasts to adipocytes induced by transfection of ras oncogenes. Science 1991; 253: 565–568.

    CAS  PubMed  Google Scholar 

  133. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    CAS  PubMed  Google Scholar 

  134. Adnane J, Jackson RJ, Nicosia SV, Cantor AB, Pledger WJ, Sebti SM . Loss of p21WAF1/CIP1 accelerates Ras oncogenesis in a transgenic/knockout mammary cancer model. Oncogene 2000; 19: 5338–5347.

    CAS  PubMed  Google Scholar 

  135. Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 1997; 88: 593–602.

    CAS  PubMed  Google Scholar 

  136. Mercer KE, Pritchard CA . Raf proteins and cancer: B-Raf is identified as a mutational target. Biochim Biophys Acta 2003; 1653: 25–40.

    CAS  PubMed  Google Scholar 

  137. Naumann U, Eisenmann-Tappe I, Rapp UR . The role of Raf kinases in development and growth of tumors. Recent Results Cancer Res 1997; 143: 237–244.

    CAS  PubMed  Google Scholar 

  138. Pritchard CA, Bolin L, Slattery R, Murray R, McMahon M . Post-natal lethality and neurological and gastrointestinal defects in mice with targeted disruption of the A-Raf protein kinase gene. Curr Biol 1996; 6: 614–617.

    CAS  PubMed  Google Scholar 

  139. Mercer K, Chiloeches A, Huser M, Kiernan M, Marais R, Pritchard C . ERK signalling and oncogene transformation are not impaired in cells lacking A-Raf. Oncogene 2002; 21: 347–355.

    CAS  PubMed  Google Scholar 

  140. Sutor SL, Vroman BT, Armstrong EA, Abraham RT, Karnitz LM . A phosphatidylinositol 3-kinase-dependent pathway that differentially regulates c-Raf and A-Raf. J Biol Chem 1999; 274: 7002–7010.

    CAS  PubMed  Google Scholar 

  141. Barnier JV, Papin C, Eychene A, Lecoq O, Calothy G . The mouse B-raf gene encodes multiple protein isoforms with tissue-specific expression. J Biol Chem 1995; 270: 23381–23389.

    CAS  PubMed  Google Scholar 

  142. Wojnowski L, Zimmer AM, Beck TW, Hahn H, Bernal R, Rapp UR, Zimmer A . Endothelial apoptosis in Braf-deficient mice. Nat Genet 1997; 16: 293–297.

    CAS  PubMed  Google Scholar 

  143. Rommel C, Clarke BA, Zimmermann S, Nunez L, Rossman R, Reid K et al. Differentiation stage-specific inhibition of the Raf–MEK–ERK pathway by Akt. Science 1999; 286: 1738–1741.

    CAS  PubMed  Google Scholar 

  144. Zimmermann S, Moelling K . Phosphorylation and regulation of Raf by Akt (protein kinase B). Science 1999; 286: 1741–1744.

    CAS  PubMed  Google Scholar 

  145. Erhardt P, Schremser EJ, Cooper GM . B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol Cell Biol 1999; 19: 5308–5315.

    CAS  PubMed  PubMed Central  Google Scholar 

  146. Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ . Differential regulation of Raf-1, A-Raf, and B-Raf by oncogenic ras and tyrosine kinases. J Biol Chem 1997; 272: 4378–4383.

    CAS  PubMed  Google Scholar 

  147. Chong H, Lee J, Guan KL . Positive and negative regulation of Raf kinase activity and function by phosphorylation. EMBO J 2001; 20: 3716–3727.

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Zhang BH, Tang ED, Zhu T, Greenberg ME, Vojtek AB, Guan KL . Serum- and glucocorticoid-inducible kinase SGK phosphorylates and negatively regulates B-Raf. J Biol Chem 276; 2001: 31620–31626.

    Google Scholar 

  149. Erhardt P, Troppmair J, Rapp UR, Cooper GM . Differential regulation of Raf-1 and B-Raf and Ras-dependent activation of mitogen-activated protein kinase by cyclin AMP in PC12 cells. Mol Cell Biol 1995; 15: 5524–5530.

    CAS  PubMed  PubMed Central  Google Scholar 

  150. Erhardt P, Schremser EJ, Cooper GM . B-Raf inhibits programmed cell death downstream of cytochrome c release from mitochondria by activating the MEK/Erk pathway. Mol Cell Biol 1999; 19: 5308–5315.

    CAS  PubMed  PubMed Central  Google Scholar 

  151. Yuryev A, Ono M, Goff SA, Macaluso F, Wennogle LP . Isoform-specific localization of A-RAF in mitochondria. Mol Cell Biol 2000; 20: 4870–4878.

    CAS  PubMed  PubMed Central  Google Scholar 

  152. Rapp UR, Goldsborough MD, Mark GE, Bonner TI, Groffen J, Reynolds Jr FH et al. Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. Proc Natl Acad Sci USA 1983; 80: 4218–4222.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. Heinicke T, Radziwill G, Nawrath M, Rommel C, Pavlovic J, Moelling K . Retroviral gene transfer of dominant negative raf-1 mutants suppresses ha-ras-induced transformation and delays tumor formation. Cancer Gene Ther 2000; 7: 697–706.

    CAS  PubMed  Google Scholar 

  154. Wang HG, Rapp UR, Reed JC . Bcl-2 targets the protein kinase Raf-1 to mitochondria. Cell 1996; 87: 629–638.

    CAS  PubMed  Google Scholar 

  155. Salomoni P, Wasik MA, Riedel RF, Reiss K, Choi JK, Skorski T et al. Expression of constitutively active Raf-1 in the mitochondria restores antiapoptotic and leukemogenic potential of a transformation-deficient BCR/ABL mutant. J Exp Med 1998; 187: 1995–2007.

    CAS  PubMed  PubMed Central  Google Scholar 

  156. Blagosklonny MV, Schulte T, Nguyen P, Trepel J, Neckers LM . Taxol-induced apoptosis and phosphorylation of Bcl-2 protein involves c-Raf-1 and represents a novel c-Raf-1 signal transduction pathway. Cancer Res 1996; 56: 1851–1854.

    CAS  PubMed  Google Scholar 

  157. Hindley A, Kolch W . Extracellular signal regulated kinase (ERK)/mitogen activated protein kinase (MAPK)-independent functions of Raf kinases. J Cell Sci 2002; 115: 1575–1581.

    CAS  PubMed  Google Scholar 

  158. Samuels ML, Weber MJ, Bishop JM, McMahon M . Conditional transformation of cells and rapid activation of the mitogen-activated protein kinase cascade by an estradiol-dependent human raf-1 protein kinase. Mol Cell Biol 1993; 13: 6241–6252.

    CAS  PubMed  PubMed Central  Google Scholar 

  159. Pritchard CA, Samuels ML, Bosch E, McMahon M . Conditionally oncogenic forms of the A-raf and B-raf protein kinases display different biological and biochemical properties in NIH 3T3 cells. Mol Cell Biol 1995; 15: 6430–6442.

    CAS  PubMed  PubMed Central  Google Scholar 

  160. McCubrey JA, Steelman LS, Hoyle PE, Blalock WL, Weinstein-Oppenheimer C, Franklin RA et al. Differential abilities of activated Raf oncoproteins to abrogate cytokine dependency, prevent apoptosis and induce autocrine growth factor synthesis in human hematopoietic cells. Leukemia 1998; 12: 1903–1929.

    CAS  PubMed  Google Scholar 

  161. Hoyle PE, Moye PW, Steelman LS, Blalock WL, Franklin RA, Pearce M et al. Differential abilities of the Raf family of protein kinases to abrogate cytokine dependency and prevent apoptosis in murine hematopoietic cells by a MEK1-dependent mechanism. Leukemia 2000; 14: 642–656.

    CAS  PubMed  Google Scholar 

  162. Sewing A, Wiseman B, Lloyd AC, Land H . High-intensity Raf signal causes cell cycle arrest mediated by p21Cip1. Mol Cell Biol 1997; 17: 5588–5597.

    CAS  PubMed  PubMed Central  Google Scholar 

  163. Mason CS, Springer CJ, Cooper RG, Superti-Furga G, Marshall CJ, Marais R . Serine and tyrosine phosphorylations cooperate in Raf-1, but not B-Raf activation. EMBO J 1999; 18: 2137–2148.

    CAS  PubMed  PubMed Central  Google Scholar 

  164. Weber CK, Slupsky JR, Herrmann C, Schuler M, Rapp UR, Block C . Mitogenic signaling of Ras is regulated by differential interaction with Raf isozymes. Oncogene 2000; 19: 169–176.

    CAS  PubMed  Google Scholar 

  165. Bosch E, Cherwinski H, Peterson D, McMahon M . Mutations of critical amino acids affect the biological and biochemical properties of oncogenic A-Raf and Raf-1. Oncogene 1997; 15: 1021–1033.

    CAS  PubMed  Google Scholar 

  166. Wu J, Dent P, Jelinek T, Wolfman A, Weber MJ, Sturgill TW . Inhibition of the EGF-activated MAP kinase signaling pathway by adenosine 3′,5′-monophosphate. Science 1993; 262: 1065–1069.

    CAS  PubMed  Google Scholar 

  167. Schramm K, Niehof M, Radziwill G, Rommel C, Moelling K . Phosphorylation of c-Raf-1 by protein kinase A interferes with activation. Biochem Biophys Res Commun 1994; 201: 740–747.

    CAS  PubMed  Google Scholar 

  168. Dumaz N, Light Y, Marais R . Cyclic AMP blocks cell growth through Raf-1-dependent and Raf-1-independent mechanisms. Mol Cell Biol 2002; 22: 3717–3728.

    CAS  PubMed  PubMed Central  Google Scholar 

  169. Kitayama H, Sugimoto Y, Matsuzaki T, Ikawa Y, Noda M . A ras-related gene with transformation suppressor activity. Cell 1989; 56: 77–84.

    CAS  PubMed  Google Scholar 

  170. Zhang XF, Settleman J, Kyriakis JM, Takeuchi-Suzuki E, Elledge SJ, Marshall MS et al. Normal and oncogenic p21ras proteins bind to the amino-terminal regulatory domain of c-Raf-1. Nature 1993; 364: 308–313.

    CAS  PubMed  Google Scholar 

  171. Zang M, Waelde CA, Xiang X, Rana A, Wen R, Luo Z . Microtubule integrity regulates Pak leading to Ras-independent activation of Raf-1, insights into mechanisms of Raf-1 activation. J Biol Chem 2001; 276: 25157–25165.

    CAS  PubMed  Google Scholar 

  172. Sozeri O, Vollmer K, Liyanage M, Frith D, Kour G, Mark III GE et al. Activation of the c-Raf protein kinase by protein kinase C phosphorylation. Oncogene 1992; 7: 2259–2262.

    CAS  PubMed  Google Scholar 

  173. Hamilton M, Liao J, Cathcart MK, Wolfman A . Constitutive association of c-N-Ras with c-Raf-1 and protein kinase C epsilon in latent signaling modules. J Biol Chem 2001; 276: 29079–29090.

    CAS  PubMed  Google Scholar 

  174. Dhillon AS, Kolch W . Untying the regulation of the Raf-1 kinase. Arch Biochem Biophys 2002; 404: 3–9.

    CAS  PubMed  Google Scholar 

  175. Michaud NR, Fabian JR, Mathes KD, Morrison DK . 14-3-3 is not essential for Raf-1 function: identification of Raf-1 proteins that are biologically activated in a 14-3-3- and Ras-independent manner. Mol Cell Biol 1995; 15: 3390–3397.

    CAS  PubMed  PubMed Central  Google Scholar 

  176. Muslin AJ, Tanner JW, Allen PM, Shaw AS . Interaction of 14-3-3 with signaling proteins is mediated by the recognition of phosphoserine. Cell 1996; 84: 889–897.

    CAS  PubMed  Google Scholar 

  177. Rommel C, Radziwill G, Lovric J, Noeldeke J, Heinicke T, Jones D et al. Activated Ras displaces 14-3-3 protein from the amino terminus of c-Raf-1. Oncogene 1996; 12: 609–619.

    CAS  PubMed  Google Scholar 

  178. Yip-Schneider MT, Miao W, Lin A, Barnard DS, Tzivion G, Marshall MS . Regulation of the Raf-1 kinase domain by phosphorylation and 14-3-3 association. Biochem J 2000; 351: 151–159.

    CAS  PubMed  PubMed Central  Google Scholar 

  179. Traverse S, Cohen P . Identification of a latent MAP kinase kinase kinase in PC12 cells as B-raf. FEBS Lett 1994; 350: 13–18.

    CAS  PubMed  Google Scholar 

  180. Carey KD, Watson RT, Pessin JE, Stork PJ . The requirement of specific membrane domains for Raf-1 phosphorylation and activation. J Biol Chem 2003; 278: 3185–3196.

    CAS  PubMed  Google Scholar 

  181. Schmitt JM, Stork PJ . Galpha and Gbeta gamma require distinct Src-dependent pathways to activate Rap1 and Ras. J Biol Chem 2002; 277: 43024–43032.

    CAS  PubMed  Google Scholar 

  182. Liao Y, Satoh T, Gao X, Jin TG, Hu CD, Kataoka T . RA-GEF-1, a guanine nucleotide exchange factor for Rap-1, is activated by translocation induced by association with Rap1*GTP and enhances Rap-1 dependent B-Raf activation. J Biol Chem 2001; 276: 28478–28483.

    CAS  PubMed  Google Scholar 

  183. Im E, von Lintig FC, Chen J, Zhuang S, Qui W, Chowdhury S et al. Rheb is in a high activation stat and inhibits B-Raf kinases in mammalian cells. Oncogene 2002; 21: 6356–6365.

    CAS  PubMed  Google Scholar 

  184. Mizutani S, Inouye K, Koide H, Kaziro Y . Involvement of B-Raf in Ras-induced Raf-1 activation. FEBS Lett 2001; 507: 295–298.

    CAS  PubMed  Google Scholar 

  185. Zhang BH, Guan KL . Regulation of the Raf kinase by phosphorylation. Exp Cell Res 2001; 27: 269–295.

    CAS  Google Scholar 

  186. Pearson G, Bumeister R, Henry DO, Cobb MH, White MA . Uncoupling Raf1 from MEK1/2 impairs only a subset of cellular responses to Raf activation. J Biol Chem 2000; 275: 37303–37306.

    CAS  PubMed  Google Scholar 

  187. Huang W, Kessler DS, Erikson RL . Biochemical and biological analysis of Mek1 phosphorylation site mutants. Mol Biol Cell 1995; 6: 237–245.

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Tanoue T, Maeda R, Adachi M, Nishida E . Identification of a docking groove on ERK and p38 MAP kinases that regulates the specificity of docking interactions. EMBO J 2001; 20: 466–479.

    CAS  PubMed  PubMed Central  Google Scholar 

  189. Crews CM, Alessandrini A, Erikson RL . The primary structure of MEK, a protein kinase that phosphorylates the ERK gene product. Science 1992; 258: 478–480.

    CAS  PubMed  Google Scholar 

  190. Giroux S, Tremblay M, Bernard D, Cardin-Girard JF, Aubry S, Larouche L et al. Embryonic death of Mek1-deficient mice reveals a role for this kinase in angiogenesis in the labyrinthine region of the placenta. Curr Biol 1999; 9: 369–372.

    CAS  PubMed  Google Scholar 

  191. Alberola-Ila J, Forbush KA, Seger R, Krebs EG, Perlmutter RM . Selective requirement for MAP kinase activation in thymocyte differentiation. Nature 1995; 373: 620–623.

    CAS  PubMed  Google Scholar 

  192. Brunet A, Pages G, Pouyssegur J . Constitutively active mutants of MAP kinase kinase (MEK1) induce growth factor-relaxation and oncogenicity when expressed in fibroblasts. Oncogene 1994; 9: 3379–3387.

    CAS  PubMed  Google Scholar 

  193. Bottorff D, Stang S, Agellon S, Stone JC . RAS signalling is abnormal in a c-raf1 MEK1 double mutant. Mol Cell Biol 1995; 15: 5113–5122.

    CAS  PubMed  PubMed Central  Google Scholar 

  194. Alessandrini A, Greulich H, Huang W, Erikson RL . Mek1 phosphorylation site mutants activate Raf-1 in NIH 3T3 cells. J Biol Chem 1996; 271: 31612–31618.

    CAS  PubMed  Google Scholar 

  195. Blalock WL, Pearce M, Steelman LS, Franklin RA, McCarthy SA, Cherwinski H et al. A conditionally-active form of MEK1 results in autocrine tranformation of human and mouse hematopoietic cells. Oncogene 2000; 19: 526–536.

    CAS  PubMed  Google Scholar 

  196. McCubrey JA, Steelman LS, Moye PW, Hoyle PE, Weinstein-Oppenheimer C, Chang F et al. Effects of deregulated RAF and MEK1 expression on the cytokine-dependency of hematopoietic cells. Adv Enzyme Regul 2000; 40: 305–337.

    CAS  PubMed  Google Scholar 

  197. Blalock WL, Moye PW, Chang F, Pearce M, Steelman LS, McMahon M et al. Combined effects of aberrant MEK1 activity and BCL2 overexpression on relieving the cytokine-dependency of human and murine hematopoietic cells. Leukemia 2000; 14: 1080–1096.

    CAS  PubMed  Google Scholar 

  198. Blalock WL, Pearce M, Chang F, Lee J, Pohnert S, Burrows C et al. Effects of inducible MEK1 activation on the cytokine-dependency of lymphoid cells. Leukemia 2001; 15: 794–807.

    CAS  PubMed  Google Scholar 

  199. Blalock WL, Steelman LS, Shelton JG, Moye PW, Lee JT, Franklin RA et al. Requirement for the PI3K/Akt pathway in MEK1-mediated growth and prevention of apoptosis: identification of an Achilles heel in leukemia. Leukemia 2003; 17: 1058–1067.

    CAS  PubMed  Google Scholar 

  200. Lin AW, Barradas M, Stone JC, van Aelst L, Serrano M, Lowe SW . Premature senescence involving p53 and p16 is activated in response to constitutive MEK/MAPK mitogenic signaling. Genes Dev 1998; 12: 3008–3019.

    CAS  PubMed  PubMed Central  Google Scholar 

  201. Carter AB, Hunninghake GW . A constitutive active MEK→ERK pathway negatively regulates NF-kappa B-dependent gene expression by modulating TATA-binding protein phosphorylation. J Biol Chem 2000; 275: 27858–27864.

    CAS  PubMed  Google Scholar 

  202. Alessi DR, Cuenda A, Cohen P, Dudley DT, Saltiel AR . PD 098059 is a specific inhibitor of the activation of mitogen-activated protein kinase kinase in vitro and in vivo. J Biol Chem 1995; 270: 27489–27494.

    CAS  PubMed  Google Scholar 

  203. Davies SP, Reddy H, Caivano M, Cohen P . Specificity and mechanism of action of some commonly used protein kinase inhibitors. Biochem J 2000; 351: 95–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  204. Favata MF, Horiuchi KY, Manos EJ, Daulerio AJ, Stradley DA, Feeser WS et al. Identification of a novel inhibitor of mitogen-activated protein kinase kinase. J Biol Chem 1998; 273: 18623–18632.

    CAS  PubMed  Google Scholar 

  205. Sturgill TW, Ray LB . Muscle proteins related to microtubule associated protein-2 are substrates for an insulin-stimulatable kinase. Biochem Biophys Res Commun 1986; 134: 565–571.

    CAS  PubMed  Google Scholar 

  206. Anderson NG, Maller JL, Tonks NK, Sturgill TW . Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 1990; 343: 651–653.

    CAS  PubMed  Google Scholar 

  207. Boulton TG, Cobb MH . Identification of multiple extracellular signal-regulated kinases (ERKs) with antipeptide antibodies. Cell Regul 1991; 2: 357–371.

    CAS  PubMed  PubMed Central  Google Scholar 

  208. Seger R, Seger D, Lozeman FJ, Ahn NG, Graves LM, Campbell JS et al. Human T-cell mitogen-activated protein kinase kinases are related to yeast signal transduction kinases. J Biol Chem 1992; 267: 25628–25631.

    CAS  PubMed  Google Scholar 

  209. Robbins DJ, Zhen E, Owaki H, Vanderbilt CA, Ebert D, Geppert TD et al. Regulation and properties of extracellular signal-regulated protein kinases 1 and 2 in vitro. J Biol Chem 1993; 268: 5097–5106.

    CAS  PubMed  Google Scholar 

  210. Sun H, Charles CH, Lau LF, Tonks NK . MKP-1 (3CH134), an immediate early gene product, is a dual specificity phosphatase that dephosphorylates MAP kinase in vivo. Cell 1993; 75: 487–493.

    CAS  PubMed  Google Scholar 

  211. Zheng CF, Guan KL . Cytoplasmic localization of the mitogen-activated protein kinase activator MEK. J Biol Chem 1994; 269: 19947–19952.

    CAS  PubMed  Google Scholar 

  212. Khokhlatchev AV, Canagarajah B, Wilsbacher J, Robinson M, Atkinson M, Goldsmith E et al. Phosphorylation of the MAP kinase ERK2 promotes its homodimerization and nuclear translocation. Cell 1998; 93: 605–615.

    CAS  PubMed  Google Scholar 

  213. Clark-Lewis I, Sanghera JS, Pelech SL . Definition of a consensus sequence for peptide substrate recognition by p44mpk, the meiosis-activated myelin basic protein kinase. J Biol Chem 1991; 266: 15180–15184.

    CAS  PubMed  Google Scholar 

  214. Pages G, Brunet A, L'Allemain G, Pouyssegur J . Constitutive mutant and putative regulatory serine phosphorylation site of mammalian MAP kinase kinase (MEK1). EMBO J 1994; 13: 3003–3010.

    CAS  PubMed  PubMed Central  Google Scholar 

  215. Willard FS, Crouch MF . MEK, ERK, and p90RSK are present on mitotic tubulin in Swiss 3T3 cells: a role for the MAP kinase pathway in regulating mitotic exit. Cell Signal 2001; 13: 653–664.

    CAS  PubMed  Google Scholar 

  216. Mazzucchelli C, Vantaggiato C, Ciamei A, Fasano S, Pakhotin P, Krezel W et al. Knockout of ERK1 MAP kinase enhances synaptic plasticity in the striatum and facilitates striatal-mediated learning and memory. Neuron 2002; 34: 807–820.

    CAS  PubMed  Google Scholar 

  217. Lu D, Nounou R, Beran M, Estey E, Manshouri T, Kantarjian H et al. The prognostic significance of bone marrow levels of neurofibromatosis-1 protein and ras oncogene mutations in patients with acute myeloid leukemia and myelodysplastic syndrome. Cancer 2003; 97: 441–449.

    CAS  PubMed  Google Scholar 

  218. Kurzrock R, Cortes J, Kantarjian H . Clinical development of farnesyltransferase inhibitors in leukemias and myelodysplastic syndromes. Semin Hematol 2002; 39: 20–24.

    CAS  PubMed  Google Scholar 

  219. Freedman MH, Alter BP . Risk of myelodysplastic syndrome and acute myeloid leukemia in congenital neutropenias. Semin Hematol 2002; 39: 128–133.

    CAS  PubMed  Google Scholar 

  220. Fenaux P . Chromosome and molecular abnormalities in myelodysplastic syndromes. Int J Hematol 2001; 73: 429–437.

    CAS  PubMed  Google Scholar 

  221. Scheele JS, Ripple D, Lubbert M . The role of ras and other low molecular weight guanine nucleotide (GTP) binding proteins during hematopoietic cell differentiation. Cell Mol Life Sci 2000; 57: 150–163.

    Google Scholar 

  222. Padua RA, West RR . Oncogene mutation and prognosis in the myelodysplastic syndromes. Br J Haematol 2000; 111: 873–874.

    CAS  PubMed  Google Scholar 

  223. de Souza Fernandez T, Ornellas MH, de Carvalho LO, Maioli MC, de Lucena SB, Tabak et al. Complex karyotype and N-RAS point mutation in a case of acute megakaryoblastic leukemia (M7) following a myelodysplastic syndrome. Cancer Genet Cytogenet 2000; 117: 104–107.

    CAS  PubMed  Google Scholar 

  224. Eaton DL, Gallagher EP . Mechanisms of aflatoxin carcinogenesis. Annu Rev Pharmacol Toxicol 1994; 34: 135–172.

    CAS  PubMed  Google Scholar 

  225. Flotho C, Valcamonica S, Mach-Pascual S, Schmahl G, Corral L, Ritterbach J et al. RAS mutations and clonality analysis in children with juvenile myelomonocytic leukemia (JMML). Leukemia 1999; 13: 32–37.

    CAS  PubMed  Google Scholar 

  226. Stirewalt DL, Kopecky KJ, Meshinchi S, Appelbaum FR, Slovak ML, Willman CL et al. FLT3, RAS, and TP53 mutations in elderly patients with acute myeloid leukemia. Blood 2001; 97: 3589–3595.

    CAS  PubMed  Google Scholar 

  227. Bartram CR . Mutations in ras genes in myelocytic leukemias and myelodysplastic syndromes. Blood Cells 1988; 14: 533–538.

    CAS  PubMed  Google Scholar 

  228. Rowell CA, Kowalczyk JJ, Lewis MD, Garcia AM . Direct demonstration of geranylgeranylation and farnesylation of Ki-Ras in vivo. J Biol Chem 1997; 272: 14093–14097.

    CAS  PubMed  Google Scholar 

  229. Nagasu T, Yoshimatsu K, Rowell C, Lewis MD, Garcia AM . Inhibition of human tumor xenograft growth by treatment with the farnesyl transferase inhibitor B956. Cancer Res 1995; 55: 5310–5314.

    CAS  PubMed  Google Scholar 

  230. Lavelle F . Inhibitors of farnesyl transferase in oncology: from basic research to pharmaceutical research. C R Seances Soc Biol Fil 1997; 191: 211–219.

    CAS  PubMed  Google Scholar 

  231. James GL, Goldstein JL, Brown MS . Polylysine and CVIM sequences of K-RasB dictate specificity of prenylation and confer resistance to benzodiazepine peptidomimetic in vitro. J Biol Chem 1995; 270: 6221–6226.

    CAS  PubMed  Google Scholar 

  232. Hahn SM, Bernhard E, McKenna WG . Farnesyltransferase inhibitors. Semin Oncol 2001; 28: 86–93.

    CAS  PubMed  Google Scholar 

  233. Morgan MA, Ganser A, Reuter CWM . Therapeutic efficacy of prenylation inhibitors in the treatment of myeloid leukemia. Leukemia 2003; 17: 1482–1499.

    CAS  PubMed  Google Scholar 

  234. Morgan MA, Wegner J, Aydilek E, Ganser A, Reuter CWM . Synergistic cytotoxic effects in myeloid leukemia cells upon cotreatment with farnesyltransferase and geranylgeranyl transferase-I inhibitors. Leukemia 2003; 17: 1508–1521.

    CAS  PubMed  Google Scholar 

  235. Zujewski J, Horak ID, Bol CJ, Woestenborghs R, Bowden C, End DW et al. Phase I and pharmacokinetic study of farnesyl protein transferase inhibitor R115777 in advanced cancer. J Clin Oncol 2000; 18: 927–941.

    CAS  PubMed  Google Scholar 

  236. Hoover RR, Mahon FX, Melo JV, Daley GQ . Overcoming STI571 resistance with the farnesyl transferase inhibitor SCH66336. Blood 2002; 100: 1068–1071.

    CAS  PubMed  Google Scholar 

  237. Karp JE, Kaufmann SH, Adjei AA, Lancet JE, Wright JJ, End DW . Current status of clinical trials of farnesyltransferase inhibitors. Curr Opin Oncol 2001; 13: 470–476.

    CAS  PubMed  Google Scholar 

  238. Feldkamp MM, Lau N, Roncari L, Guha A . Isotype-specific Ras.GTP-levels predict the efficacy of farnesyl transferase inhibitors against human astrocytomas regardless of Ras mutational status. Cancer Res 2001; 61: 4425–4431.

    CAS  PubMed  Google Scholar 

  239. Adjei AA, Davis JN, Erlichman C, Svingen PA, Kaufmann SH . Comparison of potential markers of farnesyltransferase inhibition. Clin Cancer Res 2000; 6: 2318–2325.

    CAS  PubMed  Google Scholar 

  240. Xia Z, Tan MM, Wong WW, Dimitroulakos J, Minden MD, Penn LZ . Blocking protein geranylgeranylation is essential for lovastatin-induced apoptosis of human acute myeloid leukemia cells. Leukemia 2001; 15: 1398–1407.

    CAS  PubMed  Google Scholar 

  241. Morgan MA, Dolp O, Reuter CW . Cell-cycle-dependent activation of mitogen-activated protein kinase kinase (MEK-1/2) in myeloid leukemia cell lines and induction of growth inhibition and apoptosis by inhibitors of RAS signaling. Blood 2001; 979: 1823–1834.

    Google Scholar 

  242. Mazet JL, Padieu M, Osman H, Maume G, Mailliet P, Dereu N et al. Combination of the novel farnesyltransferase inhibitor RPR130401 and the geranylgeranyltransferase-1 inhibitor GGTI-298 disrupts MAP kinase activation and G(1)–S transition in Ki-Ras-overexpressing transformed adrenocortical cells. FEBS Lett 1999; 460: 235–240.

    CAS  PubMed  Google Scholar 

  243. Hahn SM, Bernhard E, McKenna WG . Farnesyltransferase inhibitors. Semin Oncol 2001; 28: 86–93.

    CAS  PubMed  Google Scholar 

  244. Owa T, Yoshino H, Yoshimatsu K, Nagasu T . Cell cycle regulation in the G1 phase: a promising target for the development of new chemotherapeutic anticancer agents. Curr Med Chem 2001; 8: 1487–1503.

    CAS  PubMed  Google Scholar 

  245. Hunt JT, Ding CZ, Batorsky R, Bednarz M, Bhide R, Cho Y et al. Discovery of (R)-7-cyano-2,3,4,5-tetrahydro-1-(1H-imidazol-4-ylmethyl)-3- (phenylmethyl)-4-(2-thienylsulfonyl)-1H-1,4-benzodiazepine (BMS-214662), a farnesyltransferase inhibitor with potent preclinical antitumor activity. J Med Chem 2000; 43: 3587–3595.

    CAS  PubMed  Google Scholar 

  246. Bayes M, Rabasseda X, Prous JR . Gateways to clinical trials. Methods Find Exp Clin Pharmacol 2002; 24: 291–327.

    CAS  PubMed  Google Scholar 

  247. Singh SB, Lingham RB . Current progress on farnesyl protein transferase inhibitors. Curr Opin Drug Discov Dev 2002; 5: 225–244.

    CAS  Google Scholar 

  248. Matallanas D, Arozarena I, Berciano MT, Aaronson DS, Pellicer A, Lafarga M et al. Differences on the inhibitory specificities of H-Ras, K-Ras and N-Ras (N17) dominant negative mutants are related to their membrane microlocalization. J Biol Chem 2003; 278: 4572–4581.

    CAS  PubMed  Google Scholar 

  249. Pells S, Divjak M, Romanowski P, Impey H, Hawkins NJ, Clarke AR et al. Developmentally-regulated expression of murine K-ras isoforms. Oncogene 1997; 15: 1781–1786.

    CAS  PubMed  Google Scholar 

  250. Kamiguti AS, Harris RJ, Slupsky JR, Baker PK, Cawley JC, Zuzel M . Regulation of hairy-cell survival through constitutive activation of mitogen-activated protein kinase pathways. Oncogene 2003; 22: 2272–2284.

    CAS  PubMed  Google Scholar 

  251. Cohen Y, Xing M, Mambo E, Guo Z, Wu G, Trink B et al. BRAF mutation in papillary thyroid carcinoma. BRAF mutation in papillary thyroid carcinoma. J Natl Cancer Inst 2003; 95: 625–662.

    CAS  PubMed  Google Scholar 

  252. Kimura ET, Nikiforova MN, Zhu Z, Knauf JA, Nikiforov YE, Fagin JA . High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive activation of the RET/PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma. Cancer Res 2003; 63: 1454–1457.

    CAS  PubMed  Google Scholar 

  253. Singer G, Oldt III R, Cohen Y, Wang BG, Sidransky D, Kurman RJ et al. Mutations in BRAF and KRAS characterize the development of low-grade ovarian serous carcinoma. J Natl Cancer Inst 2003; 95: 484–486.

    CAS  PubMed  Google Scholar 

  254. Smalley KS . A pivotal role for ERK in the oncogenic behaviour of malignant melanoma? Int J Cancer 2003; 104: 527–532.

    CAS  PubMed  Google Scholar 

  255. Satyamoorthy K, Li G, Gerrero MR, Brose MS, Volpe P, Weber BL et al. Constitutive mitogen-activated protein kinase activation in melanoma is mediated by both BRAF mutations and autocrine growth factor stimulation. Cancer Res 2003; 63: 756–759.

    CAS  PubMed  Google Scholar 

  256. Park JI, Strock CJ, Ball DW, Nelkin BD . The Ras/Raf/MEK/extracellular signal-regulated kinase pathway induces autocrine-paracrine growth inhibition via the leukemia inhibitory factor/JAK/STAT pathway. Mol Cell Biol 2003; 23: 543–554.

    CAS  PubMed  PubMed Central  Google Scholar 

  257. Workman P . Cancer genome targets: RAF-ing up tumor cells to overcome oncogene addiction. Expert Rev Anticancer Ther 2002; 6: 611–614.

    Google Scholar 

  258. Sippel RS, Chen H . Activation of the ras/raf-1 signal transduction pathway in carcinoid tumor cells results in morphologic transdifferentiation. Surgery 2002; 6: 1035–1039.

    Google Scholar 

  259. Naoki K, Chen TH, Richards WG, Sugarbaker DJ, Meyerson M . Missense mutations of the BRAF gene in human lung adenocarcinoma. Cancer Res 2002; 23: 7001–7003.

    Google Scholar 

  260. Brose MS, Volpe P, Feldman M, Kumar M, Rishi I, Gerrero R et al. BRAF and RAS mutations in human lung cancer and melanoma. Cancer Res 2002; 23: 6997–7000.

    Google Scholar 

  261. Pollock PM, Harper UL, Hansen KS, Yudt LM, Stark M, Robbins CM et al. High frequency of BRAF mutations in nevi. Nat Genet 2003; 33: 19–20.

    CAS  PubMed  Google Scholar 

  262. Fedorov LM, Tyrsin OY, Papadopoulos T, Camarero G, Gotz R, Rapp UR . Bcl-2 determines susceptibility to induction of lung cancer by oncogenic CRaf. Cancer Res 2002; 62: 6297–6303.

    CAS  PubMed  Google Scholar 

  263. Dong J, Phelps RG, Qiao R, Yao S, Benard O, Ronai Z et al. B Raf oncogenic mutations correlate with progression rather than initiation of human melanoma. Cancer Res 2003; 63: 3883–3886.

    CAS  PubMed  Google Scholar 

  264. Pollock PM, Meltzer PS . A genome-based strategy uncovers frequent BRAF mutations in melanoma. Cancer Cell 2002; 1: 5–7.

    Google Scholar 

  265. Davies H, Bignell GR, Cox C, Stephens P, Edkins S, Clegg S et al. Mutations of the BRAF gene in human cancer. Nature 2002; 417: 949–954.

    CAS  PubMed  Google Scholar 

  266. McPhillips F, Mullen P, Monia BP, Ritchie AA, Dorr FA, Smyth JF et al. Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer. Br J Cancer 2001; 85: 1753–1758.

    CAS  PubMed  PubMed Central  Google Scholar 

  267. Vale T, Ngo TT, White MA, Lipsky PE . Raf-induced transformation requires an interleukin 1 autocrine loop. Cancer Res 2001; 61: 602–607.

    CAS  PubMed  Google Scholar 

  268. Ramakrishna G, Sithanandam G, Cheng RY, Fornwald LW, Smith GT, Diwan BA et al. K-ras p21 expression and activity in lung and lung tumors. Exp Lung Res 2000; 26: 659–671.

    CAS  PubMed  Google Scholar 

  269. Ramakrishna G, Bialkowska A, Perella C, Birely L, Fornwald LW, Diwan BA et al. Ki-ras and the characteristics of mouse lung tumors. Mol Carcinogen 2000; 28: 156–167.

    CAS  Google Scholar 

  270. Heinicke T, Radziwill G, Nawrath M, Rommel C, Pavlovic J, Moelling K . Retroviral gene transfer of dominant negative raf-1 mutants suppresses ha-ras-induced transformation and delays tumor formation. Cancer Gene Ther 2000; 5: 697–706.

    Google Scholar 

  271. Heimbrook DC, Huber HE, Stirdivant SM, Claremon D, Liverton N, Patrick DR et al. Identification of potent, selective kinase inhibitors of Raf. Proc Am Assoc Cancer Res 1998; 39: 558.

    Google Scholar 

  272. Hall-Jackson CA, Eyers PA, Cohen P, Goedert M, Boyle FT, Hewitt N et al. Paradoxical activation of Raf by a novel Raf inhibitor. Chem Biol 1999; 6: 559–568.

    CAS  PubMed  Google Scholar 

  273. Lyons JF, Wilhelm S, Hibner B, Bollag G . Discovery of a novel Raf kinase inhibitor. Endocrine-Relat Cancer 2001; 8: 219–225.

    CAS  Google Scholar 

  274. McPhillips F, Mullen P, Monia BP, Ritchie AA, Dorr FA, Smyth JF et al. Association of c-Raf expression with survival and its targeting with antisense oligonucleotides in ovarian cancer. Br J Caner 2001; 85: 1753–1758.

    CAS  Google Scholar 

  275. Wilhelm S, Chien DS . BAY 43-9006: preclinical data. Curr Pharmaceut Des 2002; 8: 2255–2257.

    CAS  Google Scholar 

  276. Hotte SJ, Hirte HW . BAY 43-9006: early clinical data in patients with advanced solid malignancies. Curr Pharmaceut Des 2002; 8: 99–110.

    Google Scholar 

  277. Lee Jr JT, McCubrey JA . BAY 43-9006 Bayer. Curr Opin Invest Drugs 2003; 4: 757–763.

    CAS  Google Scholar 

  278. Shelton JG, Moye PW, Steelman LS, Blalock WL, Lee JT, Franklin RA et al. Differential effects of kinase cascade inhibitors on neoplastic and cytokine-mediated cell proliferation. Leukemia 2003; 17: 1765–1782.

    CAS  PubMed  Google Scholar 

  279. Kim S, Kang J, Hu W, Evers BM, Chung DH . Geldanamycin decreases Raf-1 and Akt levels and induces apoptosis in neuroblastomas. Int J Cancer 2003; 103: 352–359.

    CAS  PubMed  Google Scholar 

  280. Blagosklonny MV . Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 2002; 16: 455–462.

    CAS  PubMed  Google Scholar 

  281. Neckers L . Hsp90 inhibitors as novel cancer chemotherapeutic agents. Trends Mol Med 2002; 8: S55–61.

    CAS  PubMed  Google Scholar 

  282. An WG, Schnur RC, Neckers L, Blagosklonny MV . Depletion of p185erbB2, Raf-1 and mutant p53 proteins by geldanamycin derivatives correlates with antiproliferative activity. Cancer Chemother Pharmacol 1997; 40: 60–64.

    CAS  PubMed  Google Scholar 

  283. Avdi NJ, Malcolm KC, Nick JA, Worthen GS . A role for protein phosphatase-2A in p38 mitogen-activated protein kinase-mediated regulation of the c-Jun NH2-terminal kinase pathway in human neutrophils. J Biol Chem 2002; 277: 40687–40696.

    CAS  PubMed  Google Scholar 

  284. Garcia L, Garcia F, Llorens F, Unzeta M, Itarte E, Gomez N . PP1/PP2A phosphatases inhibitors okadaic acid and calyculin A block ERK5 activation by growth factors and oxidative stress. FEBS Lett 2002; 523: 90–94.

    CAS  PubMed  Google Scholar 

  285. Feschenko MS, Stevenson E, Nairn AC, Sweadner KJ . A novel cAMP-stimulated pathway in protein phosphatase 2A activation. J Pharmacol Exp Ther 2002; 302: 111–118.

    CAS  PubMed  Google Scholar 

  286. McCluskey A, Sim AT, Sakoff JA . Serine–threonine protein phosphatase inhibitors: development of potential therapeutic strategies. J Med Chem 2002; 45: 1151–1175.

    CAS  PubMed  Google Scholar 

  287. Matsuzawa S, Suzuki T, Suzuki M, Matsuda A, Kawamura T, Mizuno Y et al. Thyrsiferyl 23-acetate is a novel specific inhibitor of protein phosphatase PP2A. FEBS Lett 1994; 356: 272–274.

    CAS  PubMed  Google Scholar 

  288. Swannie HC, Kaye SB . Protein kinase C inhibitors. Curr Oncol Rep 2002; 4: 37–46.

    PubMed  Google Scholar 

  289. Carter CA . Protein kinase C as a drug target: implications for drug or diet prevention and treatment of cancer. Curr Drug Targets 2000; 1: 163–183.

    CAS  PubMed  Google Scholar 

  290. Stepczynska A, Lauber K, Engels IH, Janssen O, Kabelitz D, Wesselborg S et al. Staurosporine and conventional anticancer drugs induce overlapping, yet distinct pathways of apoptosis and caspase activation. Oncogene 2001; 20: 1193–1202.

    CAS  PubMed  Google Scholar 

  291. Kornblau SM, Konopleva M, Andreeff M . Apoptosis regulating proteins as targets of therapy for haematological malignancies. Expert Opin Investig Drugs 1999; 8: 2027–2057.

    CAS  PubMed  Google Scholar 

  292. Fabbro D, Ruetz S, Bodis S, Pruschy M, Csermak K, Man A et al. PKC412 – a protein kinase inhibitor with a broad therapeutic potential. Anticancer Drug Des 2000; 15: 17–28.

    CAS  PubMed  Google Scholar 

  293. Senderowicz AM . The cell cycle as a target for cancer therapy: basic and clinical findings with the small molecule inhibitors flavopiridol and UCN-01. Oncologist 2002; 2: 12–19.

    Google Scholar 

  294. Sato S, Fujita N, Tsuruo T . Interference with PDK1-Akt survival signaling pathway by UCN-01 (7-hydroxystaurosporine). Oncogene 2002; 21: 1727–1738.

    CAS  PubMed  Google Scholar 

  295. Goekjian PG, Jirousek MR . Protein kinase C inhibitors as novel anticancer drugs. Expert Opin Invest Drugs 2001; 10: 2117–2140.

    CAS  Google Scholar 

  296. Byrd JC, Shinn C, Willis CR, Flinn IW, Lehman T, Sausville E et al. UCN-01 induces cytotoxicity toward human CLL cells through a p53-independent mechanism. Exp Hematol 2001; 29: 703–708.

    CAS  PubMed  Google Scholar 

  297. Tortora G, Ciardiello F . Protein kinase A as target for novel integrated strategies of cancer therapy. Ann NY Acad Sci 2002; 968: 139–147.

    CAS  PubMed  Google Scholar 

  298. Feldman AM . Adenylyl cyclase: a new target for heart failure therapeutics. Circulation 2002; 105: 1876–1878.

    CAS  PubMed  Google Scholar 

  299. Drummond MW, Holyoake TL . Tyrosine kinase inhibitors in the treatment of chronic myeloid leukaemia: so far so good? Blood Rev 2001; 15: 85–95.

    CAS  PubMed  Google Scholar 

  300. Schulte TW, Neckers LM . The benzoquinone ansamycin 17-allylamino-17-demethoxygeldanamycin binds to HSP90 and shares important biologic activities with geldanamycin. Cancer Chemother Pharmacol 1998; 42: 273–279.

    CAS  PubMed  Google Scholar 

  301. Ortaldo JR, Mason AT, Longo DL, Beckwith M, Creekmore SP, McVicar DW . T cell activation via the disialoganglioside GD3: analysis of signal transduction. J Leukoc Biol 1996; 60: 533–539.

    CAS  PubMed  Google Scholar 

  302. Blagosklonny MV . Hsp-90-associated oncoproteins: multiple targets of geldanamycin and its analogs. Leukemia 2002; 16: 455–462.

    CAS  PubMed  Google Scholar 

  303. Roginskaya V, Zuo S, Caudell E, Nambudiri G, Kraker AJ, Corey SJ . Therapeutic targeting of Src-kinase Lyn in myeloid leukemic cell growth. Leukemia 1999; 13: 855–861.

    CAS  PubMed  Google Scholar 

  304. Dimitroff CJ, Klohs W, Sharma A, Pera P, Driscoll D, Veith J et al. Anti-angiogenic activity of selected receptor tyrosine kinase inhibitors, PD166285 and PD173074: implications for combination treatment with photodynamic therapy. Invest New Drugs 1999; 17: 121–135.

    CAS  PubMed  Google Scholar 

  305. Panek RL, Lu GH, Klutchko SR, Batley BL, Dahring TK, Hamby JM et al. In vitro pharmacological characterization of PD 166285, a new nanomolar potent and broadly active protein tyrosine kinase inhibitor. J Pharmacol Exp Ther 1997; 283: 1433–1444.

    CAS  PubMed  Google Scholar 

  306. Zheleznova NN, Melikova MS, Nikol'skii NN, Kornilova ES . The role of Src-kinase in the regulation of endocytosis of EGF-receptor complexes. I. Dynamics of EGF internalization, recycling, sorting, and degradation during inhibition of Src-kinase activity. Tsitologiia 2001; 43: 1136–1145.

    CAS  PubMed  Google Scholar 

  307. Melikova MS, Zheleznova NN, Nikol'skii NN, Kornilova ES . The role of Src-kinase in the regulation of endocytosis of EGF-receptor complexes. Distribution of clathrin after stimulation of EGR endocytosis in various cell lines during inhibition of Src-kinase activity. Tsitologiia 2001; 43: 1146–1152.

    CAS  PubMed  Google Scholar 

  308. Vasilenko KP, Butylin PA, Arnautov AM, Nikolskii NN . The role of SRC kinase in activation of transcription factor STAT1. Tsitologiia 2001; 43: 1031–1037.

    CAS  PubMed  Google Scholar 

  309. Freitas F, Jeschke M, Majstorovic I, Mueller DR, Schindler P, Voshol H et al. Fluoroaluminate stimulates phosphorylation of p130 Cas and Fak and increases attachment and spreading of preosteoblastic MC353-E1 cells. Bone 2002; 30: 99–108.

    CAS  PubMed  Google Scholar 

  310. Olayioye MA, Badache A, Daly JM, Hynes NE . An essential role for Src kinase in ErbB receptor signaling through the MAPK pathway. Exp Cell Res 2001; 267: 81–87.

    CAS  PubMed  Google Scholar 

  311. Pages G, Guerin S, Grall D, Bonino F, Smith A, Anjuere F et al. Defective thymocyte maturation in p44 MAP kinase (Erk 1) knockout mice. Science 1999; 286: 1374–1377.

    CAS  PubMed  Google Scholar 

  312. Selcher JC, Nekrasova T, Paylor R, Landreth GE, Sweatt JD . Mice lacking the ERK1 isoform of MAP kinase are unimpaired in emotional learning. Learn Memory 2001; 8: 11–19.

    CAS  Google Scholar 

  313. Pouyssegur J, Volmat V, Lenormand P . Fidelity and spatio-temporal control in MAP kinase (ERKs) signaling. Biochem Pharm 2002; 64: 755–763.

    CAS  PubMed  Google Scholar 

  314. Loda M, Capodieci P, Mishra R, Yao H, Corless C, Grigioni W et al. Expression of mitogen-activated protein kinase phosphatase-1 in the early phases of human epithelial carcinogenesis. Am J Pathol 1996; 149: 1553–1564.

    CAS  PubMed  PubMed Central  Google Scholar 

  315. Beltman J, McCormick F, Cook SJ . The selective protein kinase C inhibitor, Ro-31-8220, inhibits mitogen-activated protein kinase phosphatase-1 (MKP-1) expression, and activates Jun N-terminal kinase. J Biol Chem 1996; 271: 27018–27024.

    CAS  PubMed  Google Scholar 

  316. Stephens L, Eguinoa A, Corey S, Jackson T, Hawkins PT . Receptor stimulated accumulation of phosphatidylinositol (3,4,5)-trisphosphate by G-protein mediated pathways in human myeloid derived cells. EMBO J 1993; 12: 2265–2273.

    CAS  PubMed  PubMed Central  Google Scholar 

  317. Hawkins PT, Welch H, McGregor A, Eguinoa A, Gobert S, Krugmann S et al. Signalling via phosphoinositide 3OH kinases. Biochem Soc Trans 1997; 25: 1147–1151.

    CAS  PubMed  Google Scholar 

  318. MacDougall LK, Domin J, Waterfield MD . A family of phosphoinositide 3-kinases in Drosophila identifies a new mediator of signal transduction. Curr Biol 1995; 5: 1404–1415.

    CAS  PubMed  Google Scholar 

  319. Misawa H, Ohtsubo M, Copeland NG, Gilbert DJ, Jenkins NA, Yoshimura A . Cloning and characterization of a novel class II phosphoinositide 3-kinase containing C2 domain. Biochem Biophys Res Commun 1998; 244: 531–539.

    CAS  PubMed  Google Scholar 

  320. Schu PV, Takegawa K, Fry MJ, Stack JH, Waterfield MD, Emr SD . Phosphatidylinositol 3-kinase encoded by yeast VPS34 gene essential for protein sorting. Science 1993; 260: 88–91.

    CAS  PubMed  Google Scholar 

  321. Roche S, Koegl M, Courtneidge SA . The phosphatidylinositol 3-kinase alpha is required for DNA synthesis induced by some, but not all, growth factors. Proc Natl Acad Sci USA 1994; 91: 9185–9189.

    CAS  PubMed  PubMed Central  Google Scholar 

  322. Wennstrom S, Hawkins P, Cooke F, Hara K, Yonezawa K, Kasuga M et al. Activation of phosphoinositide 3-kinase is required for PDGF-stimulated membrane ruffling. Curr Biol 1994; 4: 385–393.

    CAS  PubMed  Google Scholar 

  323. Yao R, Cooper GM . Growth factor-dependent survival of rodent fibroblasts requires phosphatidylinositol 3-kinase but is independent of pp70S6K activity. Oncogene 1996; 13: 343–351.

    CAS  PubMed  Google Scholar 

  324. Bi L, Okabe I, Bernard DJ, Wynshaw-Boris A, Nussbaum RL . Proliferative defect and embryonic lethality in mice homozygous for a deletion in the p110alpha subunit of phosphoinositide 3-kinase. J Biol Chem 1999; 274: 10963–10968.

    CAS  PubMed  Google Scholar 

  325. Fruman DA, Snapper SB, Yballe CM, Alt FW, Cantley LC . Phosphoinositide 3-kinase knockout mice: role of p85alpha in B cell development and proliferation. Biochem Soc Trans 1999; 27: 624–629.

    CAS  PubMed  Google Scholar 

  326. Jimenez C, Jones DR, Rodriguez-Viciana P, Gonzalez-Garcia A, Leonardo E, Wennstrom S et al. Identification and characterization of a new oncogene derived from the regulatory subunit of phosphoinositide 3-kinase. EMBO J 1998; 17: 743–753.

    CAS  PubMed  PubMed Central  Google Scholar 

  327. Rodriguez-Viciana P, Warne PH, Vanhaesebroeck B, Waterfield MD, Downward J . Activation of phosphoinositide 3-kinase by interaction with Ras and by point mutation. EMBO J 1996; 15: 2442–2451.

    CAS  PubMed  PubMed Central  Google Scholar 

  328. Escobedo JA, Navankasattusas S, Kavanaugh WM, Milfay D, Fried VA, Williams LT . cDNA cloning of a novel 85 kd protein that has SH2 domains and regulates binding of PI3-kinase to the PDGF beta-receptor. Cell 1991; 65: 75–82.

    CAS  PubMed  Google Scholar 

  329. Skolnik EY, Margolis B, Mohammadi M, Lowenstein E, Fischer R, Drepps A et al. Cloning of PI3 kinase-associated p85 utilizing a novel method for expression/cloning of target proteins for receptor tyrosine kinases. Cell 1991; 65: 83–90.

    CAS  PubMed  Google Scholar 

  330. Otsu M, Hiles I, Gout I, Fry MJ, Ruiz-Larrea F, Panayotou G et al. Characterization of two 85 kd proteins that associate with receptor tyrosine kinases, middle-T/pp60c-src complexes, and PI3-kinase. Cell 1991; 65: 91–104.

    CAS  PubMed  Google Scholar 

  331. Musacchio A, Cantley LC, Harrison SC . Crystal structure of the breakpoint cluster region-homology domain from phosphoinositide 3-kinase p85 alpha subunit. Proc Natl Acad Sci USA 1996; 93: 14373–14378.

    CAS  PubMed  PubMed Central  Google Scholar 

  332. Zheng Y, Bagrodia S, Cerione RA . Activation of phosphoinositide 3-kinase activity by Cdc42Hs binding to p85. J Biol Chem 1994; 269: 18727–18730.

    CAS  PubMed  Google Scholar 

  333. Tolias KF, Cantley LC . Pathways for phosphoinositide synthesis. Chem Phys Lipids 1999; 98: 69–77.

    CAS  PubMed  Google Scholar 

  334. Liu X, Marengere LE, Koch CA, Pawson T . The v-Src SH3 domain binds phosphatidylinositol 3′-kinase. Mol Cell Biol 1993; 13: 5225–5232.

    CAS  PubMed  PubMed Central  Google Scholar 

  335. Prasad KV, Janssen O, Kapeller R, Raab M, Cantley LC, Rudd CE . Src-homology 3 domain of protein kinase p59fyn mediates binding to phosphatidylinositol 3-kinase in T cells. Proc Natl Acad Sci USA 1993; 90: 7366–7370.

    CAS  PubMed  PubMed Central  Google Scholar 

  336. Kapeller R, Prasad KV, Janssen O, Hou W, Schaffhausen BS, Rudd CE et al. Identification of two SH3-binding motifs in the regulatory subunit of phosphatidylinositol 3-kinase. J Biol Chem 1994; 269: 1927–1933.

    CAS  PubMed  Google Scholar 

  337. Pleiman CM, Hertz WM, Cambier JC . Activation of phosphatidylinositol-3′ kinase by Src-family kinase SH3 binding to the p85 subunit. Science 1994; 263: 1609–1612.

    CAS  PubMed  Google Scholar 

  338. Wang J, Auger KR, Jarvis L, Shi Y, Roberts TM . Direct association of Grb2 with the p85 subunit of phosphatidylinositol 3-kinase. J Biol Chem 1995; 270: 12774–12780.

    CAS  PubMed  Google Scholar 

  339. Mak P, He Z, Kurosaki T . Identification of amino acid residues required for a specific interaction between Src-tyrosine kinase and proline-rich region of phosphatidylinositol-3′ kinase. FEBS Lett 1996; 397: 183–185.

    CAS  PubMed  Google Scholar 

  340. Hu P, Mondino A, Skolnik EY, Schlessinger J . Cloning of a novel, ubiquitously expressed human phosphatidylinositol 3-kinase and identification of its binding site on p85. Mol Cell Biol 1993; 13: 7677–7688.

    CAS  PubMed  PubMed Central  Google Scholar 

  341. Klippel A, Escobedo JA, Hu Q, Williams LT . A region of the 85-kilodalton (kDa) subunit of phosphatidylinositol 3-kinase binds the 110-kDa catalytic subunit in vivo. Mol Cell Biol 1993; 13: 5560–5566.

    CAS  PubMed  PubMed Central  Google Scholar 

  342. Dhand R, Hara K, Hiles I, Bax B, Gout I, Panayotou G et al. PI 3-kinase: structural and functional analysis of intersubunit interactions. EMBO J 1994; 13: 511–521.

    CAS  PubMed  PubMed Central  Google Scholar 

  343. Holt KH, Olson L, Moye-Rowley WS, Pessin JE . Phosphatidylinositol 3-kinase activation is mediated by high-affinity interactions between distinct domains within the p110 and p85 subunits. Mol Cell Biol 1994; 14: 42–49.

    CAS  PubMed  PubMed Central  Google Scholar 

  344. Klippel A, Escobedo JA, Hirano M, Williams LT . The interaction of small domains between the subunits of phosphatidylinositol 3-kinase determines enzyme activity. Mol Cell Biol 1994; 14: 2675–2785.

    CAS  PubMed  PubMed Central  Google Scholar 

  345. Carpenter CL, Auger KR, Duckworth BC, Hou WM, Schaffhausen B, Cantley LC . A tightly associated serine/threonine protein kinase regulates phosphoinositide 3-kinase activity. Mol Cell Biol 1993; 13: 1657–1665.

    CAS  PubMed  PubMed Central  Google Scholar 

  346. Stoyanova S, Bulgarelli-Leva G, Kirsch C, Hanck T, Klinger R, Wetzker R et al. Lipid kinase and protein kinase activities of G-protein-coupled phosphoinositide 3-kinase gamma: structure–activity analysis and interactions with wortmannin. Biochem J 1997; 324: 489–495.

    CAS  PubMed  PubMed Central  Google Scholar 

  347. Vanhaesebroeck B, Welham MJ, Kotani K, Stein R, Warne PH, Zvelebil MJ et al. P110delta, a novel phosphoinositide 3-kinase in leukocytes. Proc Natl Acad Sci USA 1997; 94: 4330–4335.

    CAS  PubMed  PubMed Central  Google Scholar 

  348. Gout I, Middleton G, Adu J, Ninkina NN, Drobot LB, Filonenko V et al. Negative regulation of PI 3-kinase by Ruk, a novel adaptor protein. EMBO J 2000; 19: 4015–4025.

    CAS  PubMed  PubMed Central  Google Scholar 

  349. Zvelebil MJ, MacDougall L, Leevers S, Volinia S, Vanhaesebroeck B, Gout I et al. Structural and functional diversity of phosphoinositide 3-kinases. Phil Trans R Soc Lond B 1996; 351: 217–223.

    CAS  Google Scholar 

  350. Taylor SS, Knighton DR, Zheng J, Ten Eyck LF, Sowadski JM . Structural framework for the protein kinase family. Annu Rev Cell Biol 1992; 8: 429–462.

    CAS  PubMed  Google Scholar 

  351. Arcaro A, Wymann MP . Wortmannin is a potent phosphatidylinositol 3-kinase inhibitor: the role of phosphatidylinositol 3,4,5-trisphosphate in neutrophil responses. Biochem J 1993; 296: 297–301.

    CAS  PubMed  PubMed Central  Google Scholar 

  352. Yano H, Nakanishi S, Kimura K, Hanai N, Saitoh Y, Fukui Y et al. Inhibition of histamine secretion by wortmannin through the blockade of phosphatidylinositol 3-kinase in RBL-2H3 cells. J Biol Chem 1993; 268: 25846–25856.

    CAS  PubMed  Google Scholar 

  353. Vlahos CJ, Matter WF, Hui KY, Brown RF . A specific inhibitor of phosphatidylinositol 3-kinase, 2-(4-morpholinyl)-8-phenyl-4H-1-benzopyran-4-one (LY294002). J Biol Chem 1994; 269: 5241–5248.

    CAS  PubMed  Google Scholar 

  354. Flanagan CA, Schnieders EA, Emerick AW, Kunisawa R, Admon A, Thorner J . Phosphatidylinositol 4-kinase: gene structure and requirement for yeast cell viability. Science 1993; 262: 1444–1448.

    CAS  PubMed  Google Scholar 

  355. Molendijk AJ, Irvine RF . Inositide signalling in Chlamydomonas: characterization of a phosphatidylinositol 3-kinase gene. Plant Mol Biol 1998; 37: 53–66.

    CAS  PubMed  Google Scholar 

  356. Yu J, Zhang Y, McIlroy J, Rordorf-Nikolic T, Orr GA, Backer JM . Regulation of the p85/p110 phosphatidylinositol 3′-kinase: stabilization and inhibition of the p110alpha catalytic subunit by the p85 regulatory subunit. Mol Cell Biol 1998; 18: 1379–1387.

    CAS  PubMed  PubMed Central  Google Scholar 

  357. van der Geer P, Hunter T, Lindberg RA . Receptor protein-tyrosine kinases and their signal transduction pathways. Annu Rev Cell Biol 1994; 10: 251–337.

    CAS  PubMed  Google Scholar 

  358. Wymann MP, Pirola L . Structure and function of phosphoinositide 3-kinases. Biochim Biophys Acta 1998; 1436: 127–150.

    CAS  PubMed  Google Scholar 

  359. Harrison-Findik D, Misra S, Jain SK, Keeler ML, Powell KA, Malladi CS et al. Dynamin inhibits phosphatidylinositol 3-kinase in hematopoietic cells. Biochim Biophys Acta 2001; 1538: 10–19.

    CAS  PubMed  Google Scholar 

  360. Soltoff SP, Cantley LC . p120cbl is a cytosolic adapter protein that associates with phosphoinositide 3-kinase in response to epidermal growth factor in PC12 and other cells. J Biol Chem 1996; 271: 563–567.

    CAS  PubMed  Google Scholar 

  361. Dombrosky-Ferlan PM, Corey SJ . Yeast two-hybrid in vivo association of the Src kinase Lyn with the proto-oncogene product Cbl but not with the p85 subunit of PI 3-kinase. Oncogene 1997; 14: 2019–2024.

    CAS  PubMed  Google Scholar 

  362. Hunter S, Koch BL, Anderson SM . Phosphorylation of cbl after stimulation of Nb2 cells with prolactin and its association with phosphatidylinositol 3-kinase. Mol Endocrinol 1997; 11: 1213–1222.

    CAS  PubMed  Google Scholar 

  363. Kim S, Jee K, Kim D, Koh H, Chung J . Cyclic AMP inhibits Akt activity by blocking the membrane localization of PDK1. J Biol Chem 2001; 276: 12864–12870.

    CAS  PubMed  Google Scholar 

  364. Palmer RH, Dekker LV, Woscholski R, Le Good JA, Gigg R, Parker PJ . Activation of PRK1 by phosphatidylinositol 4,5-bisphosphate and phosphatidylinositol 3,4,5-trisphosphate. A comparison with protein kinase C isotypes. J Biol Chem 1995; 270: 22412–22416.

    CAS  PubMed  Google Scholar 

  365. Toker A, Meyer M, Reddy KK, Falck JR, Aneja R, Aneja S et al. Activation of protein kinase C family members by the novel polyphosphoinositides PtdIns-3,4-P2 and PtdIns-3,4,5-P3. J Biol Chem 1994; 269: 32358–32367.

    CAS  PubMed  Google Scholar 

  366. Nakanishi H, Brewer KA, Exton JH . Activation of the zeta isozyme of protein kinase C by phosphatidylinositol 3,4,5-trisphosphate. J Biol Chem 1993; 268: 13–16.

    CAS  PubMed  Google Scholar 

  367. Alessi DR, Deak M, Casamayor A, Caudwell FB, Morrice N, Norman DG et al. 3-Phosphoinositide-dependent protein kinase-1 (PDK1): structural and functional homology with the Drosophila DSTPK61 kinase. Curr Biol 1997; 7: 776–789.

    CAS  PubMed  Google Scholar 

  368. Vanhaesebroeck B, Alessi DR . The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 2000; 346: 561–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  369. Stokoe D, Stephens LR, Copeland T, Gaffney PR, Reese CB, Painter GF et al. Dual role of phosphatidylinositol-3,4,5-trisphosphate in the activation of protein kinase B. Science 1997; 277: 567–570.

    CAS  PubMed  Google Scholar 

  370. Anderson NG, Maller JL, Tonks NK, Sturgill TW . Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 1990; 343: 651–653.

    CAS  PubMed  Google Scholar 

  371. Currie RA, Walker KS, Gray A, Deak M, Casamayor A, Downes CP et al. Role of phosphatidylinositol 3,4,5-trisphosphate in regulating the activity and localization of 3-phosphoinositide-dependent protein kinase-1. Biochem J 1999; 337: 575–583.

    CAS  PubMed  PubMed Central  Google Scholar 

  372. Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P et al. Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J 1996; 15: 6541–6551.

    CAS  PubMed  PubMed Central  Google Scholar 

  373. Walker KS, Deak M, Paterson A, Hudson K, Cohen P, Alessi DR . Activation of protein kinase B beta and gamma isoforms by insulin in vivo and by 3-phosphoinositide-dependent protein kinase-1 in vitro: comparison with protein kinase B alpha. Biochem J 1998; 331: 299–308.

    CAS  PubMed  PubMed Central  Google Scholar 

  374. Balendran A, Casamayor A, Deak M, Paterson A, Gaffney P, Currie R et al. PDK1 acquires PDK2 activity in the presence of a synthetic peptide derived from the carboxyl terminus of PRK2. Curr Biol 1999; 9: 393–404.

    CAS  PubMed  Google Scholar 

  375. Scheid MP, Marignani PA, Woodgett JR . Multiple phosphoinositoide 3-kinase-dependent steps in activation of protein kinase B. Mol Cell Biol 2002; 22: 6247–6260.

    CAS  PubMed  PubMed Central  Google Scholar 

  376. Storz P, Toker A . 3′-Phosphoinositide-dependent kinase-1 (PDK-1) in PI 3-kinase signaling. Front Biosci 2002; 7: 886–902.

    Google Scholar 

  377. Cantley LC . The phosphoinositide 3-kinase pathway. Science 2002; 296: 1655–1657.

    CAS  PubMed  Google Scholar 

  378. Yoganathan N, Yee A, Zhang Z, Leung D, Yan J, Fazli L et al. Integrin-linked kinase, a promising cancer therapeutic target: biochemical and biological properties. Pharmacol Ther 2002; 93: 233–242.

    CAS  PubMed  Google Scholar 

  379. Tan C, Mui A, Dedhar S . Integrin-linked kinase regulates inducible nitric oxide synthase and cyclooxygenase-2 expression in an NF-kappa B-dependent manner. J Biol Chem 2002; 277: 3109–3115.

    CAS  PubMed  Google Scholar 

  380. Persad S, Attwell S, Gray V, Mawji N, Deng JT, Leung D et al. Regulation of protein kinase B/Akt-serine 473 phosphorylation by integrin-linked kinase: critical roles for kinase activity and amino acids arginine 211 and serine 343. J Biol Chem 2001; 276: 27462–27469.

    CAS  PubMed  Google Scholar 

  381. Kim S, Jee K, Kim D, Koh H, Chung J . Cyclic AMP inhibits Akt activity by blocking the membrane localization of PDK1. J Biol Chem 2001; 276: 12864–12870.

    CAS  PubMed  Google Scholar 

  382. Staal SP . Molecular cloning of the akt oncogene and its human homologues AKT1 and AKT2: amplification of AKT1 in a primary human gastric adenocarcinoma. Proc Natl Acad Sci USA 1987; 84: 5034–5037.

    CAS  PubMed  PubMed Central  Google Scholar 

  383. Staal SP, Hartley JW . Thymic lymphoma induction by the AKT8 murine retrovirus. J Exp Med 1988; 167: 1259–1264.

    CAS  PubMed  Google Scholar 

  384. Coffer PJ, Woodgett JR . Molecular cloning and characterization of a novel putative protein-serine kinase related to the cAMP-dependent and protein kinase C families. Eur J Biochem 1992; 205: 1217.

    CAS  PubMed  Google Scholar 

  385. Nicolson KM, Anderson NG . The protein kinase B/Akt signaling pathway in human malignancy. Cell Signal 2002; 14: 381–395.

    Google Scholar 

  386. Jones PF, Jakubowicz T, Pitossi FJ, Maurer F, Hemmings BA . Molecular cloning and identification of a serine/threonine protein kinase of the second-messenger subfamily. Proc Natl Acad Sci USA 1991; 88: 4171–4175.

    CAS  PubMed  PubMed Central  Google Scholar 

  387. Bellacosa A, de Feo D, Godwin AK, Bell DW, Cheng JQ, Altomare DA et al. Molecular alterations of the AKT2 oncogene in ovarian and breast carcinomas. Int J Cancer 1995; 64: 280–285.

    CAS  PubMed  Google Scholar 

  388. Staal SP, Huebner K, Croce CM, Parsa NZ, Testa JR . The AKT1 proto-oncogene maps to human chromosome 14, band q32. Genomics 1988; 2: 96–98.

    CAS  PubMed  Google Scholar 

  389. Cheng JQ, Godwin AK, Bellacosa A, Taguchi T, Franke TF, Hamilton TC et al. AKT2, a putative oncogene encoding a member of a subfamily of protein-serine/threonine kinases, is amplified in human ovarian carcinomas. Proc Natl Acad Sci USA 1992; 89: 9267–9271.

    CAS  PubMed  PubMed Central  Google Scholar 

  390. Miwa W, Yasuda J, Murakami Y, Yashima K, Sugano K, Sekine T et al. Isolation of DNA sequences amplified at chromosome 19q13.1–q13.2 including the AKT2 locus in human pancreatic cancer. Biochem Biophys Res Commun 1996; 225: 968–974.

    CAS  PubMed  Google Scholar 

  391. Bellacosa A, Franke TF, Gonzalez-Portal ME, Datta K, Taguchi T, Gardner J et al. Structure, expression and chromosomal mapping of c-akt: relationship to v-akt and its implications. Oncogene 1993; 8: 745–754.

    CAS  PubMed  Google Scholar 

  392. Haslam RJ, Koide HB, Hemmings BA . Pleckstrin domain homology. Nature 1993; 363: 309–310.

    CAS  PubMed  Google Scholar 

  393. Mayer BJ, Ren R, Clark KL, Baltimore D . A putative modular domain present in diverse signaling proteins. Cell 1993; 73: 629–630.

    CAS  PubMed  Google Scholar 

  394. Ahmed NN, Franke TF, Bellacosa A, Datta K, Gonzalez-Portal ME, Taguchi T et al. The proteins encoded by c-akt and v-akt differ in post-translational modification, subcellular localization and oncogenic potential. Oncogene 1993; 8: 1957–1963.

    CAS  PubMed  Google Scholar 

  395. Mirza AM, Kohn AD, Roth RA, McMahon M . Oncogenic transformation of cells by a conditionally active form of the protein kinase Akt/PKB. Cell Growth Differ 2000; 11: 279–292.

    CAS  PubMed  Google Scholar 

  396. Cheatham B, Vlahos CJ, Cheatham L, Wang L, Blenis J, Kahn CR . Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Mol Cell Biol 1994; 14: 4902–4911.

    CAS  PubMed  PubMed Central  Google Scholar 

  397. Okada T, Kawano Y, Sakakibara T, Hazeki O, Ui M . Essential role of phosphatidylinositol 3-kinase in insulin-induced glucose transport and antilipolysis in rat adipocytes. Studies with a selective inhibitor wortmannin. J Biol Chem 1994; 269: 3568–3573.

    CAS  PubMed  Google Scholar 

  398. Quon MJ, Chen H, Ing BL, Liu ML, Zarnowski MJ, Yonezawa K et al. Roles of 1-phosphatidylinositol 3-kinase and ras in regulating translocation of GLUT4 in transfected rat adipose cells. Mol Cell Biol 1995; 15: 5403–5411.

    CAS  PubMed  PubMed Central  Google Scholar 

  399. Kohn AD, Summers SA, Birnbaum MJ, Roth RA . Expression of a constitutively active Akt Ser/Thr kinase in 3T3-L1 adipocytes stimulates glucose uptake and glucose transporter 4 translocation. J Biol Chem 1996; 271: 31372–31378.

    CAS  PubMed  Google Scholar 

  400. Tanti JF, Grillo S, Gremeaux T, Coffer PJ, Van Obberghen E, Le Marchand-Brustel Y . Potential role of protein kinase B in glucose transporter 4 translocation in adipocytes. Endocrinology 1997; 138: 2005–2010.

    CAS  PubMed  Google Scholar 

  401. Cross DA, Alessi DR, Cohen P, Andjelkovich M, Hemmings BA . Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature 1995; 378: 785–789.

    CAS  PubMed  Google Scholar 

  402. Deprez J, Vertommen D, Alessi DR, Hue L, Rider MH . Phosphorylation and activation of heart 6-phosphofructo-2-kinase by protein kinase B and other protein kinases of the insulin signaling cascades. J Biol Chem 1997; 272: 17269–17275.

    CAS  PubMed  Google Scholar 

  403. Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N, Hay N . 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev 1998; 12: 502–513.

    CAS  PubMed  PubMed Central  Google Scholar 

  404. Ueki K, Yamamoto-Honda R, Kaburagi Y, Yamauchi T, Tobe K, Burgering BM et al. Potential role of protein kinase B in insulin-induced glucose transport, glycogen synthesis, and protein synthesis. J Biol Chem 1998; 273: 5315–5322.

    CAS  PubMed  Google Scholar 

  405. Li Q, Zhu GD . Targeting serine/threonine protein kinase B/Akt and cell-cycle checkpoint kinases for treating cancer. Curr Top Med Chem 2002; 2: 939–971.

    CAS  PubMed  Google Scholar 

  406. Datta SR, Brunet A, Greenberg ME . Cellular survival: a play in three Akts. Genes Dev 1999; 13: 2905–2927.

    CAS  PubMed  Google Scholar 

  407. Kaneshima H, Itoh M, Asai J, Taguchi O, Hiai H . Reorganization of thymic microenvironment during development and lymphomagenesis. Jpn J Cancer Res 1987; 78: 799–806.

    CAS  PubMed  Google Scholar 

  408. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y et al. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 1997; 91: 231–241.

    CAS  PubMed  Google Scholar 

  409. Andreeff M, Jiang S, Zhang X, Konopleva M, Estrov Z, Snell VE et al. Expression of Bcl-2 related genes in normal and AML progenitors: changes induced by chemotherapy and retinoic acid. Leukemia 1999; 11: 1881–1892.

    Google Scholar 

  410. Cardone MH, Roy N, Stennicke HR, Salvesen GS, Franke TF, Stanbridge E et al. Regulation of cell death protease caspase-9 by phosphorylation. Science 1998; 282: 1318–1321.

    CAS  PubMed  Google Scholar 

  411. Biggs III WH, Meisenhelder J, Hunter T, Cavenee WK, Arden KC . Protein kinase B/Akt-mediated phosphorylation promotes nuclear exclusion of the winged helix transcription factor FKHR1. Proc Natl Acad Sci USA 1999; 96: 7421–7426.

    CAS  PubMed  PubMed Central  Google Scholar 

  412. Brunet A, Bonni A, Zigmond MJ, Lin MZ, Juo P, Hu LS et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96: 857–868.

    CAS  PubMed  Google Scholar 

  413. Rena G, Guo S, Cichy SC, Unterman TG, Cohen P . Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 1999; 274: 17179–17183.

    CAS  PubMed  Google Scholar 

  414. Tang ED, Nunez G, Barr FG, Guan KL . Negative regulation of the forkhead transcription factor FKHR by Akt. J Biol Chem 1999; 274: 16741–16746.

    CAS  PubMed  Google Scholar 

  415. Ozes ON, Mayo LD, Gustin JA, Pfeffer SR, Pfeffer LM, Donner DB . NF-kappaB activation by tumour necrosis factor requires the Akt serine–threonine kinase. Nature 1999; 401: 82–85.

    CAS  PubMed  Google Scholar 

  416. Fukumoto S, Hsieh CM, Maemura K, Layne MD, Yet SF, Lee KH et al. Akt participation in the Wnt signaling pathway through Dishevelled. J Biol Chem 2001; 276: 17479–17483.

    CAS  PubMed  Google Scholar 

  417. Zhou BP, Liao Y, Xia W, Zou Y, Spohn B, Hung MC . HER-2/neu induces p53 ubiquitination via Akt-mediated MDM2 phosphorylation. Nat Cell Biol 2001; 3: 973–982.

    CAS  PubMed  Google Scholar 

  418. De Mesquita DD, Zhan Q, Crossley L, Badwey JA . p90-RSK and Akt may promote rapid phosphorylation/inactivation of glycogen synthase kinase 3 in chemoattractant-stimulated neutrophils. FEBS Lett 2001; 502: 84–88.

    CAS  PubMed  Google Scholar 

  419. Desbois-Mouthon C, Cadoret A, Blivet-Van Eggelpoel MJ, Bertrand F, Cherqui G, Perret C et al. Insulin and IGF-1 stimulate the beta-catenin pathway through two signalling cascades involving GSK-3beta inhibition and Ras activation. Oncogene 2001; 20: 252–259.

    CAS  PubMed  Google Scholar 

  420. Altiok S, Batt D, Altiok N, Papautsky A, Downward J, Roberts TM et al. Heregulin induces phosphorylation of BRCA1 through phosphatidylinositol 3-kinase/AKT in breast cancer cells. J Biol Chem 1999; 274: 32274–32278.

    CAS  PubMed  Google Scholar 

  421. Miralem T, Avraham HK . Extracellular matrix enhances heregulin-dependent BRCA1 phosphorylation and suppresses BRCA1 expression through its C terminus. Mol Cell Biol 2003; 23: 579–593.

    CAS  PubMed  PubMed Central  Google Scholar 

  422. Fan S, Ma YX, Wang JA, Yuan RQ, Meng Q, Cao Y et al. The cytokine hepatocyte growth factor/scatter factor inhibits apoptosis and enhances DNA repair by a common mechanism involving signaling through phosphatidyl inositol 3′kinase. Oncogene 2000; 19: 2212–2223.

    CAS  PubMed  Google Scholar 

  423. Navolanic PM, Lee JT, McCubrey JA . Docetaxol cytotoxicity is enhanced by inhibition of the Raf/MEK/ERK pathway. Cancer Biol Ther 2004; 3: 29–30.

    Google Scholar 

  424. Vazquez F, Sellers WR . The PTEN tumor suppressor protein: an antagonist of phosphoinositide signaling. Biochim Biophys Acta 2000; 1470: M21–35.

    CAS  PubMed  Google Scholar 

  425. Wu X, Senechal K, Neshat MS, Whang YE, Sawyers CL . The PTEN/MMAC1 tumor suppressor phosphatase functions as a negative regulator of the phosphoinositide 3-kinase/Akt pathway. Proc Natl Acad Sci USA 1998; 95: 15587–15591.

    CAS  PubMed  PubMed Central  Google Scholar 

  426. Leslie NR, Gray A, Pass I, Orchiston EA, Downes . Analysis of the cellular functions of PTEN using catalytic domain and C-terminal mutations: differential effects of C-terminal deletion on signaling pathways downstream of phosphoinositide 3-kinase. Biochem J 2000; 346: 827–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  427. Dahia PL, Aquiar RC, Alberta J, Kum JB, Caron S, Sill H et al. PTEN is inversely correlated with the cell survival factor Akt/PKB and is inactivated via multiple mechanism in haematological malignancies. Hum Mol Genet 1999; 8: 185–193.

    CAS  PubMed  Google Scholar 

  428. Rohrschneider LR, Fuller JF, Wolf I, Liu Y, Lucas DM . Structure, function, and biology of SHIP proteins. Genes Dev 2000; 14: 505–520.

    CAS  PubMed  Google Scholar 

  429. Taylor V, Wong M, Brandts C, Reilly L, Dean NM, Cowsert LM et al. 5′phospholipid phosphatase SHIP-2 causes protein kinase B inactivation and cell cycle arrest in glioblastoma cells. Mol Cell Biol 2000; 20: 6860–6871.

    CAS  PubMed  PubMed Central  Google Scholar 

  430. Muraille E, Pesesse X, Kuntz C, Erneux C . Distribution of the src-homology-2-domain-containing inositol 5-phosphatase SHIP-2 in both non-haemopoietic and haemopoietic cells and possible involvement in SHIP-2 in negative signaling of B-cells. Biochem J 1999; 342: 697–705.

    CAS  PubMed  PubMed Central  Google Scholar 

  431. Luo JM, Yoshida H, Komura S, Ohishi N, Pan L, Shigeno K et al. Possible dominant-negative mutation of the SHIP gene in acute myeloid leukemia. Leukemia 2003; 17: 1–8.

    CAS  PubMed  Google Scholar 

  432. Baserga R, Morrione A . Differentiation and malignant transformation: two roads diverged in a wood. J Cell Biochem 1999: (Suppl. 32–33): 68–75.

  433. Matsumoto J, Kaneda M, Tada M, Hamada J, Okushiba S, Kondo S et al. Differential mechanisms of constitutive Akt/PKB activation and its influence on gene expression in pancreatic cancer cells. Jpn J Cancer Res 2002; 93: 1317–1326.

    CAS  PubMed  PubMed Central  Google Scholar 

  434. Clark AS, West K, Streicher S, Dennis PA . Constitutive and inducible Akt activity promotes resistance to chemotherapy, trastuzumab, or tamoxifen in breast cancer cells. Mol Cancer Ther 2002; 1: 707–717.

    CAS  PubMed  Google Scholar 

  435. Fan X, Aalto Y, Sanko SG, Knuutila S, Klatzmann D, Castresana JS . Genetic profile, PTEN mutation and therapeutic role of PTEN in glioblastomas. Int J Oncol 2002; 21: 1141–1150.

    CAS  PubMed  Google Scholar 

  436. Shi Y, Gera J, Hu L, Hsu JH, Bookstein R, Li W et al. Enhanced sensitivity of multiple myeloma cells containing PTEN mutations to CCI-779. Cancer Res 2002; 62: 5027–5034.

    CAS  PubMed  Google Scholar 

  437. Zhou XP, Loukola A, Salovaara R, Nystrom-Lahti M, Peltomaki P . PTEN mutational spectra, expression levels, and subcellular localization in microsatellite stable and unstable colorectal cancers. Am J Pathol 2002; 161: 439–447.

    CAS  PubMed  PubMed Central  Google Scholar 

  438. Eng C . Role of PTEN, a lipid phosphatase upstream effector of protein kinase B, in epithelial thyroid carcinogenesis. Ann NY Acad Sci 2002; 968: 213–221.

    CAS  PubMed  Google Scholar 

  439. Xiao A, Wu H, Pandolfi PP, Louis DN, Van Dyke T . Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 2002; 1: 157–168.

    CAS  PubMed  Google Scholar 

  440. Stall FJ, van der Luijt RB, Baert MR, van Drunen J, van Bakel H, Peters E et al. A novel germline mutation of PTEN associated with brain tumors of multiple lineages. Br J Cancer 2002; 86: 1586–1591.

    Google Scholar 

  441. Knobbe CB, Merlo A, Reifenberger G . Pten signaling in gliomas. Neuro-oncology 2002; 4: 196–211.

    CAS  PubMed  PubMed Central  Google Scholar 

  442. Graff JR, Konicek BW, McNulty AM, Wang Z, Houck K, Allen S et al. Increased Akt activity contributes to prostate cancer progression by dramatically accelerating prostate tumor growth and diminishing p27Kip-1 expression. J Biol Chem 2000; 275: 24500–24505.

    CAS  PubMed  Google Scholar 

  443. Cheng JQ, Ruggeri B, Klein WM, Sonoda G, Altomare DA, Watson DK et al. Amplification of AKT2 in human pancreatic cells and inhibition of AKT2 expression and tumorigenicity by anti-sense RNA. Proc Natl Acad Sci USA 1996; 93: 3636–3641.

    CAS  PubMed  PubMed Central  Google Scholar 

  444. Conway AM, Rakhit S, Pyne S, Pyne NJ . Platelet-derived-growth-factor stimulation of the p42/p44 mitogen-activated protein kinase pathway in airway smooth muscle: role of pertussis-toxin-sensitive G-proteins, c-Src tyrosine kinases and phosphoinositide 3-kinase. Biochem J 1999; 337: 171–177.

    CAS  PubMed  PubMed Central  Google Scholar 

  445. Cross DA, Alessi DR, Vandenheede JR, McDowell HE, Hundal HS, Cohen P . The inhibition of glycogen synthase kinase-3 by insulin or insulin-like growth factor 1 in the rat skeletal muscle cell line L6 is blocked by wortmannin, but not by rapamycin: evidence that wortmannin blocks activation of the mitogen-activated protein kinase pathway in L6 cells between Ras and Raf. Biochem J 1994; 303: 21–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  446. Von Willebrand M, Jascur T, Bonnefoy-Berard N, Yano H, Altman A, Matsuda Y et al. Inhibition of phosphatidylinositol 3-kinase blocks T cell antigen receptor/CD3-induced activation of the mitogen-activated kinase Erk2. Eur J Biochem 1996; 235: 828–835.

    CAS  PubMed  Google Scholar 

  447. Ferby IM, Waga I, Hoshino M, Kume K, Shimizu T . Wortmannin inhibits mitogen-activated protein kinase activation by platelet-activating factor through a mechanism independent of p85/p110-type phosphatidylinositol 3-kinase. J Biol Chem 1996; 271: 11684–11688.

    CAS  PubMed  Google Scholar 

  448. King WG, Mattaliano MD, Chan TO, Tsichlis PN, Brugge JS . Phosphatidylinositol 3-kinase is required for integrin-stimulated AKT and Raf-1/mitogen-activated protein kinase pathway activation. Mol Cell Biol 1997; 17: 4406–4418.

    CAS  PubMed  PubMed Central  Google Scholar 

  449. Craddock BL, Hobbs J, Edmead CE, Welham MJ . Phosphoinositide 3-kinase-dependent regulation of interleukin-3-induced proliferation: involvement of mitogen-activated protein kinases, SHP2 and Gab2. J Biol Chem 2001; 276: 24274–24283.

    CAS  PubMed  Google Scholar 

  450. Guan KL, Figueroa C, Brtva TR, Zhu T, Taylor J, Barber TD et al. Negative regulation of the serine/threonine kinase B-Raf by Akt. J Biol Chem 2000; 275: 27354–27359.

    CAS  PubMed  Google Scholar 

  451. Larson RA, Daley GQ, Schiffer CA, Porcu P, Pui CH, Marie JP et al. Treatment by design in leukemia, a meeting report, Philadelphia, Pennsylvania, December 2002. Leukemia 2003; 12: 2358–2382.

    Google Scholar 

  452. Puil L, Liu J, Gish G, Mbamalu G, Boutell D, Pelicci PG et al. Bcr-Abl oncoproteins bind directly to activators of the Ras signalling pathway. EMBO J 1994; 15: 664–773.

    Google Scholar 

  453. Verma A, Platanias LC . Signaling via the interferon-alpha receptor in chronic myelogenous leukemia cells. Leuk Lymphoma 2002; 43: 703–709.

    CAS  PubMed  Google Scholar 

  454. Abe JI, Che W, Yoshizumi M, Huang Q, Glassman M, Ohta S et al. Bcr in vascular smooth muscle cells involvement of Ras and Raf-1 activation by Bcr. Ann NY Acad Sci 2001; 947: 341–343.

    CAS  PubMed  Google Scholar 

  455. Neshat MS, Raitano AB, Wang HG, Reed JC, Sawyers CL . The survival function of the Bcr-Abl onocogene is mediated by Bad-dependent and -independent pathways: roles for phosphatidylinositol 3-kinase and Raf. Mol Cell Biol 2000; 20: 1179–1186.

    CAS  PubMed  PubMed Central  Google Scholar 

  456. C-Raf-1 serine/threonine kinase is required in BCR/ABL-dependent and normal hematopoiesis. Cancer Res 1995; 55: 2275–2278.

  457. Kindler T, Breitenbuecher F, Kasper S, Stevens T, Carius B, Bshaidmeier H et al. In BCR-ABL-positive cells, STAT-5 tyrosine-phosphorylation integrates signals induced by imatinib mesylate and Ara-C. Leukemia 2003; 17: 999–1009.

    CAS  PubMed  Google Scholar 

  458. Keeshan K, Cotter TG, McKenna SL . High Bcr-Abl expression prevents the translocation of Bax and Bad to the mitochondrion. Leukemia 2002; 16: 1725–1734.

    CAS  PubMed  Google Scholar 

  459. Nieborowska-Skorska M, Slupianek A, Skorski T . Progressive changes in the leukemogenic signaling in BCR/ABL-transformed cells. Oncogene 2000; 19: 4117–4124.

    CAS  PubMed  Google Scholar 

  460. Lin TS, Mahajan S, Frank DA . STAT signaling in the pathogenesis and treatment of leukemias. Oncogene 2000; 19: 2496–2504.

    CAS  PubMed  Google Scholar 

  461. Liu RY, Fan C, Garcia R, Jove R, Zuckerman KS . Constitutive activation of the JAK2/STAT5 signal transduction pathway correlates with growth factor independence of megakaryocytic leukemic cell lines. Blood 1999; 93: 2369–2379.

    CAS  PubMed  Google Scholar 

  462. Shuai K, Halpern J, ten Hoeve J, Rao X, Sawyers CL . Constitutive activation of STAT5 by the BCR-ABZL oncogene in chronic myelogenous leukemia. Oncogene 13; 1996: 247–254.

    Google Scholar 

  463. Sattler M, Verma S, Byrne CH, Shrikhande G, Winkler T, Algate PA et al. BCR/ABL directly inhibits expression of SHIP, an SH2-containing polyinositol-5-phosphatase involved in the regulation of hematopoiesis. Mol Cell Biol 1999; 19: 7473–7480.

    CAS  PubMed  PubMed Central  Google Scholar 

  464. Sattler M, Mohi MG, Pride YB, Quinnan LR, Malouf NA, Podar K et al. Critical role for Gab2 in transformation by BCR/ABL. Cancer Cell 2002; 1: 479–492.

    CAS  PubMed  Google Scholar 

  465. Sacha T, Hochaus A, Hanfstein B, Muller MC, Rudzki Z, Czopek J et al. Abl-kinase domain point mutation as a cause of imatinib crisis. Leuk Res 2003; 27: 1163–1166.

    CAS  PubMed  Google Scholar 

  466. Hochaus A . Cytogenetic and molecular mechanisms of resistance to imatinib. Semin Hematol 2003; 40: 69–79.

    Google Scholar 

  467. Tipping AJ, Melo JV . Imatinib mesylate in combination with other chemotherapeutic drugs: in vitro studies. Semin Hematol 2003; 40: 83–91.

    CAS  PubMed  Google Scholar 

  468. Roche-Lestiennc C, Preudhomme C . Mutations in the Abl kinase domain pre-exist the conset of imatinib treatment. Semin Hematol 2003; 40: 80–82.

    Google Scholar 

  469. Daley GQ . Towards combination target-directed chemotherapy for chronic myeloid leukemia: role of farnesyl transferase inhibitors. Semin Hematol 2003; 40: 11–14.

    CAS  PubMed  Google Scholar 

  470. Gorre ME, Ellwood-Yen K, Chiosis G, Rosen N, Sawyers CG . Bcr-Abl point mutations isolated from patients with imatinib mesylate-resistant chronic myeloid leukemia remain sensitive inhibitors of the Bcr-Abl chaperone heat shock protein 90. Blood 2002; 100: 3041–3044.

    CAS  PubMed  Google Scholar 

  471. Nimmanapalli R, Bhalla K . Novel target therapies for Bcr-Abl positive acute leukemias beyond STI571. Oncogene 2002; 21: 8584–8590.

    CAS  PubMed  Google Scholar 

  472. Hingorani SR, Tuveson DA . Targeting oncogene dependence and resistance. Cancer Cell 2003; 3: 414–417.

    CAS  PubMed  Google Scholar 

  473. Testa U, Riccioni R, Diverio D, LoCoco F, Peschle C . Interleukin-3 receptor in acute leukemia. Leukemia 2004; 18, in press.

    Google Scholar 

  474. English JM, Cobb MH . Pharmacological inhibitors of MAPK pathways. Trends Pharmacol Sci 2002; 23: 40–45.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J A McCubrey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Steelman, L., Pohnert, S., Shelton, J. et al. JAK/STAT, Raf/MEK/ERK, PI3K/Akt and BCR-ABL in cell cycle progression and leukemogenesis. Leukemia 18, 189–218 (2004). https://doi.org/10.1038/sj.leu.2403241

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403241

Keywords

This article is cited by

Search

Quick links