Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

CLL

Chronic lymphocytic leukemia cells display p53-dependent drug-induced Puma upregulation

Abstract

We investigated the apoptosis gene expression profile of chronic lymphocytic leukemia (CLL) cells in relation to (1) normal peripheral and tonsillar B-cell subsets, (2) IgVH mutation status, and (3) effects of cytotoxic drugs. In accord with their noncycling, antiapoptotic status in vivo, CLL cells displayed high constitutive expression of Bcl-2 and Flip mRNA, while Survivin, Bid and Bik were absent. Paradoxically, along with these antiapoptotic genes CLL cells had high-level expression of proapoptotic BH3-only proteins Bmf and Noxa. Treatment of CLL cells with fludarabine induced only the proapoptotic genes Bax and Puma in a p53-dependent manner. Interestingly, the degree of Puma induction was more pronounced in cells with mutated IgVH genes. Thus, disturbed apoptosis in CLL is the net result of both protective and sensitizing aberrations. This delicate balance can be tipped via induction of Puma in a p53-dependent matter, the level of which may vary between groups of patients with a different tendency for disease progression.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Caligaris-Cappio F, Hamblin TJ . B-cell chronic lymphocytic leukemia: a bird of a different feather. J Clin Oncol 1999; 17: 399–408.

    Article  CAS  PubMed  Google Scholar 

  2. Fais F, Ghiotto F, Hashimoto S, Sellars B, Valetto A, Allen SL et al. Chronic lymphocytic leukemia B cells express restricted sets of mutated and unmutated antigen receptors. J Clin Invest 1998; 102: 1515–1525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  4. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  5. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001; 194: 1639–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Klein U, Tu Y, Stolovitzky GA, Mattioli M, Cattoretti G, Husson H et al. Gene expression profiling of B cell chronic lymphocytic leukemia reveals a homogeneous phenotype related to memory B cells. J Exp Med 2001; 194: 1625–1638.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hanada M, Delia D, Aiello A, Stadtmauer E, Reed JC . bcl-2 gene hypomethylation and high-level expression in B-cell chronic lymphocytic leukemia. Blood 1993; 82: 1820–1828.

    CAS  PubMed  Google Scholar 

  8. Robertson LE, Plunkett W, McConnell K, Keating MJ, McDonnell TJ . Bcl-2 expression in chronic lymphocytic leukemia and its correlation with the induction of apoptosis and clinical outcome. Leukemia 1996; 10: 456–459.

    CAS  PubMed  Google Scholar 

  9. Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al. Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with In vitro and In vivo chemoresponses. Blood 1998; 91: 3379–3389.

    CAS  PubMed  Google Scholar 

  10. Thomas A, El Rouby S, Reed JC, Krajewski S, Silber R, Potmesil M et al. Drug-induced apoptosis in B-cell chronic lymphocytic leukemia: relationship between p53 gene mutation and bcl-2/bax proteins in drug resistance. Oncogene 1996; 12: 1055–1062.

    CAS  PubMed  Google Scholar 

  11. Bellosillo B, Villamor N, Lopez-Guillermo A, Marce S, Bosch F, Campo E et al. Spontaneous and drug-induced apoptosis is mediated by conformational changes of Bax and Bak in B-cell chronic lymphocytic leukemia. Blood 2002; 100: 1810.

    Article  CAS  PubMed  Google Scholar 

  12. Bellosillo B, Villamor N, Colomer D, Pons G, Montserrat E, Gil J . In vitro evaluation of fludarabine in combination with cyclophosphamide and/or mitoxantrone in B-cell chronic lymphocytic leukemia. Blood 1999; 94: 2836–2843.

    CAS  PubMed  Google Scholar 

  13. Kitada S, Zapata JM, Andreeff M, Reed JC . Protein kinase inhibitors flavopiridol and 7-hydroxy-staurosporine down-regulate antiapoptosis proteins in B-cell chronic lymphocytic leukemia. Blood 2000; 96: 393–397.

    CAS  PubMed  Google Scholar 

  14. Miyashita T, Reed JC . Tumor suppressor p53 is a direct transcriptional activator of the human bax gene. Cell 1995; 80: 293–299.

    Article  CAS  PubMed  Google Scholar 

  15. Nakano K, Vousden KH . PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 2001; 7: 683–694.

    Article  CAS  PubMed  Google Scholar 

  16. Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B . PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 2001; 7: 673–682.

    Article  CAS  PubMed  Google Scholar 

  17. Han J, Flemington C, Houghton AB, Gu Z, Zambetti GP, Lutz RJ et al. Expression of bbc3, a pro-apoptotic BH3-only gene, is regulated by diverse cell death and survival signals. Proc Natl Acad Sci USA 2001; 98: 11318–11323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Oda E, Ohki R, Murasawa H, Nemoto J, Shibue T, Yamashita T et al. Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 2000; 288: 1053–1058.

    Article  CAS  PubMed  Google Scholar 

  19. Sax JK, Fei P, Murphy ME, Bernhard E, Korsmeyer SJ, el Deiry WS . BID regulation by p53 contributes to chemosensitivity. Nat Cell Biol 2002; 4: 842–849.

    Article  CAS  PubMed  Google Scholar 

  20. El Rouby S, Thomas A, Costin D, Rosenberg CR, Potmesil M, Silber R et al. p53 gene mutation in B-cell chronic lymphocytic leukemia is associated with drug resistance and is independent of MDR1/MDR3 gene expression. Blood 1993; 82: 3452–3459.

    CAS  PubMed  Google Scholar 

  21. Pettitt AR, Sherrington PD, Stewart G, Cawley JC, Taylor AM, Stankovic T . p53 dysfunction in B-cell chronic lymphocytic leukemia: inactivation of ATM as an alternative to TP53 mutation. Blood 2001; 98: 814–822.

    Article  CAS  PubMed  Google Scholar 

  22. Cordone I, Masi S, Mauro FR, Soddu S, Morsilli O, Valentini T et al. p53 expression in B-cell chronic lymphocytic leukemia: a marker of disease progression and poor prognosis. Blood 1998; 91: 4342–4349.

    CAS  PubMed  Google Scholar 

  23. Dohner H, Fischer K, Bentz M, Hansen K, Benner A, Cabot G et al. p53 gene deletion predicts for poor survival and non-response to therapy with purine analogs in chronic B-cell leukemias. Blood 1995; 85: 1580–1589.

    CAS  PubMed  Google Scholar 

  24. Durig J, Nuckel H, Huttmann A, Kruse E, Holter T, Halfmeyer K et al. Expression of ribosomal and translation-associated genes is correlated with a favorable clinical course in chronic lymphocytic leukemia. Blood 2003; 101: 2748–2755.

    Article  CAS  PubMed  Google Scholar 

  25. Stankovic T, Hubank M, Cronin D, Stewart GS, Fletcher D, Bignell CR et al. Microarray analysis reveals that TP53- and ATM-mutant B-CLLs share a defect in activating proapoptotic responses after DNA damage but are distinguished by major differences in activating prosurvival responses. Blood 2004; 103: 291–300.

    Article  CAS  PubMed  Google Scholar 

  26. Vallat L, Magdelenat H, Merle-Beral H, Masdehors P, Potocki dM, Davi F et al. The resistance of B-CLL cells to DNA damage-induced apoptosis defined by DNA microarrays. Blood 2003; 101: 4598–4606.

    Article  CAS  PubMed  Google Scholar 

  27. Rosenwald A, Chuang EY, Davis RE, Wiestner A, Alizadeh AA, Arthur DC et al. Fludarabine treatment of patients with chronic lymphocytic leukemia induces a p53-dependent gene expression response. Blood 2004; 104: 1428–1434.

    Article  CAS  PubMed  Google Scholar 

  28. Schouten JP, McElgunn CJ, Waaijer R, Zwijnenburg D, Diepvens F, Pals G . Relative quantification of 40 nucleic acid sequences by multiplex ligation-dependent probe amplification. Nucleic Acids Res 2002; 30: e57.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Eldering E, Spek CA, Aberson HL, Grummels A, Derks IM, Vos AF et al. Expression profiling via novel multiplex assay allows rapid assessment of gene regulation in defined signaling pathways. Nucleic Acids Res 2003; 31: e153.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Lens SM, Drillenburg P, den Drijver BF, van Schijndel G, Pals ST, van Lier RA et al. Aberrant expression and reverse signalling of CD70 on malignant B cells. Br J Haematol 1999; 106: 491–503.

    Article  CAS  PubMed  Google Scholar 

  31. Aarts WM, Willemze R, Bende RJ, Meijer CJ, Pals ST, Van Noesel CJ . VH gene analysis of primary cutaneous B-cell lymphomas: evidence for ongoing somatic hypermutation and isotype switching. Blood 1998; 92: 3857–3864.

    CAS  PubMed  Google Scholar 

  32. Koopman G, Reutelingsperger CP, Kuijten GA, Keehnen RM, Pals ST, van Oers MH . Annexin V for flow cytometric detection of phosphatidylserine expression on B cells undergoing apoptosis. Blood 1994; 84: 1415–1420.

    CAS  PubMed  Google Scholar 

  33. Mackus WJ, Lens SM, Medema RH, Kwakkenbos MJ, Evers LM, Oers MH et al. Prevention of B cell antigen receptor-induced apoptosis by ligation of CD40 occurs downstream of cell cycle regulation. Int Immunol 2002; 14: 973–982.

    Article  CAS  PubMed  Google Scholar 

  34. Klein U, Tu Y, Stolovitzky GA, Keller JL, Haddad Jr J, Miljkovic V et al. Transcriptional analysis of the B cell germinal center reaction. Proc Natl Acad Sci USA 2003; 100: 2639–2644.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Morales AA, Olsson A, Celsing F, Osterborg A, Jondal M, Osorio LM . Expression and transcriptional regulation of functionally distinct Bmf isoforms in B-chronic lymphocytic leukemia cells. Leukemia 2004; 18: 41–47.

    Article  CAS  PubMed  Google Scholar 

  36. Collins RJ, Verschuer LA, Harmon BV, Prentice RL, Pope JH, Kerr JF . Spontaneous programmed death (apoptosis) of B-chronic lymphocytic leukaemia cells following their culture in vitro. Br J Haematol 1989; 71: 343–350.

    Article  CAS  PubMed  Google Scholar 

  37. Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ et al. p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 2003; 302: 1036–1038.

    Article  CAS  PubMed  Google Scholar 

  38. Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J et al. Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 2003; 4: 321–328.

    Article  CAS  PubMed  Google Scholar 

  39. Johnston JB, Daeninck P, Verburg L, Lee K, Williams G, Israels LG et al. P53, MDM-2, BAX and BCL-2 and drug resistance in chronic lymphocytic leukemia. Leuk Lymphoma 1997; 26: 435–449.

    Article  CAS  PubMed  Google Scholar 

  40. Damle RN, Ghiotto F, Valetto A, Albesiano E, Fais F, Yan XJ et al. B-cell chronic lymphocytic leukemia cells express a surface membrane phenotype of activated, antigen-experienced B lymphocytes. Blood 2002; 99: 4087–4093.

    Article  CAS  PubMed  Google Scholar 

  41. Defrance T, Casamayor-Palleja M, Krammer PH . The life and death of a B cell. Adv Cancer Res 2002; 86: 195–225.

    Article  CAS  PubMed  Google Scholar 

  42. Lee HH, Dadgostar H, Cheng Q, Shu J, Cheng G . NF-kappaB-mediated up-regulation of Bcl-x and Bfl-1/A1 is required for CD40 survival signaling in B lymphocytes. Proc Natl Acad Sci USA 1999; 96: 9136–9141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Grumont RJ, Rourke IJ, Gerondakis S . Rel-dependent induction of A1 transcription is required to protect B cells from antigen receptor ligation-induced apoptosis. Genes Dev 1999; 13: 400–411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Kater AP, Evers LM, Remmerswaal EB, Jaspers A, Oosterwijk MF, van Lier RA et al. CD40 stimulation of B-CLL cells enhances the anti-apoptotic profile but also Bid expression, and cells remain susceptible to autologous CTL attack. Br J Haematol 2004; 127: 404–415.

    Article  CAS  PubMed  Google Scholar 

  45. Sanz L, Garcia-Marco JA, Casanova B, de La Fuente MT, Garcia-Gila M, Garcia-Pardo A et al. Bcl-2 family gene modulation during spontaneous apoptosis of B-chronic lymphocytic leukemia cells. Biochem Biophys Res Commun 2004; 315: 562–567.

    Article  CAS  PubMed  Google Scholar 

  46. Puthalakath H, Villunger A, O'Reilly LA, Beaumont JG, Coultas L, Cheney RE et al. Bmf: a proapoptotic BH3-only protein regulated by interaction with the myosin V actin motor complex, activated by anoikis. Science 2001; 293: 1829–1832.

    Article  CAS  PubMed  Google Scholar 

  47. Caligaris-Cappio F, Bergui L, Tesio L, Corbascio G, Tousco F, Marchisio PC . Cytoskeleton organization is aberrantly rearranged in the cells of B chronic lymphocytic leukemia and hairy cell leukemia. Blood 1986; 67: 233–239.

    CAS  PubMed  Google Scholar 

  48. Shibue T, Takeda K, Oda E, Tanaka H, Murasawa H, Takaoka A et al. Integral role of Noxa in p53-mediated apoptotic response. Genes Dev 2003; 17: 2233–2238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Maloum K, Magnac C, Divine M, Lepetre S, Cazin B, Merle-Beral H . Unmutated immunoglobulin variable heavy-chain (Ig VH) gene status is associated with an incomplete response after oral fludarabine + cyclophosphamide combination in CLL. Leuk Lymphoma 2003; 44: S15.

    Article  Google Scholar 

Download references

Acknowledgements

The authors are indebted to the patients for their blood donations, and to technicians from the department of Hematology for technical assistance with patient material. Peripheral B cells were purified by Si-La Yong. Recombinant Puma-β protein was generated by Esther Beuling. The help and expertise of Lucien Aarden and Anja ten Brinke of Sanquin Research in obtaining the Puma antiserum is much appreciated. We are also grateful to Dr Laura Rassenti, Monica Cook, Lang Huynh, Traci Toy from the John and Rebecca Moores Cancer center for their technical assistance. This work was also supported by the Dutch Cancer Foundation (DCF) Grant 99-1998 to WJMM and AG, Grant 99-1996 to EE, a personal DCF Grant to APK and by Grant R37 CA49870 from the National Institute of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E Eldering.

Additional information

Supplementary Information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mackus, W., Kater, A., Grummels, A. et al. Chronic lymphocytic leukemia cells display p53-dependent drug-induced Puma upregulation. Leukemia 19, 427–434 (2005). https://doi.org/10.1038/sj.leu.2403623

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403623

Keywords

This article is cited by

Search

Quick links