Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Molecular Cytogenetics

Prognostic value of real-time quantitative PCR (RQ-PCR) in AML with t(8;21)

Abstract

Despite the favorable prognosis of patients with acute myeloid leukemia (AML) with t(8;21)(q22;q22) translocation, relapses still occur in about 30% of the cases but no initial factors can strongly predict the risk of relapse. Several recent studies suggest that monitoring minimal residual disease (MRD) may identify patients at risk of relapse. We prospectively monitored AML1–ETO rearrangement by real-time quantitative PCR (RQ-PCR) in 21 patients uniformly treated in our center. Blood (PB) and bone marrow (BM) samples were collected during and after therapy. At diagnosis, levels of AML1–ETO transcript showed large variations and there was a trend for a higher relapse rate in patients with high pretreatment expression levels (P=0.065). After induction therapy, absolute transcript levels (below 10−3, compared to Kasumi cell line), or a greater than 3 log decrease by comparison to diagnosis levels, were significant predictors of the absence of relapse (P=0.02 and P=0.02, respectively). MRD levels after consolidation therapy were also significant indicators of relapse (P=10−5). Comparison of BM and PB samples showed similar sensitivity for detecting AML1–ETO transcript. In conclusion, RQ-PCR appears to be an early predictive factor of the relapse risk in AML with t(8;21). PB samples can be used adequately to evaluate the level of MRD by this technique.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Erickson P, Gao J, Chang KS, Look T, Whisenant E, Raimondi S et al. Identification of breakpoints in t(8;21) acute myelogenous leukemia and isolation of a fusion transcript, AML1/ETO, with similarity to Drosophila segmentation gene, runt. Blood 1992; 80: 1825–1831.

    CAS  PubMed  Google Scholar 

  2. Chang KS, Fan YH, Stass SA, Estey EH, Wang G, Trujillo JM et al. Expression of AML1–ETO fusion transcripts and detection of minimal residual disease in t(8;21)-positive acute myeloid leukemia. Oncogene 1993; 8: 983–988.

    CAS  PubMed  Google Scholar 

  3. Grimwade D, Walker H, Oliver F, Wheatley K, Harrison C, Harrison G et al. The importance of diagnostic cytogenetics on outcome in AML: analysis of 1,612 patients entered into the MRC AML 10 trial. The Medical Research Council Adult and Children's Leukaemia Working Parties. Blood 1998; 92: 2322–2333.

    CAS  PubMed  Google Scholar 

  4. Byrd JC, Dodge RK, Carroll A, Baer MR, Edwards C, Stamberg J et al. Patients with t(8;21)(q22;q22) and acute myeloid leukemia have superior failure-free and overall survival when repetitive cycles of high-dose cytarabine are administered. J Clin Oncol 1999; 17: 3767–3775.

    Article  CAS  PubMed  Google Scholar 

  5. Tallman MS, Hakimian D, Shaw JM, Lissner GS, Russell EJ, Variakojis D . Granulocytic sarcoma is associated with the 8;21 translocation in acute myeloid leukemia. J Clin Oncol 1993; 11: 690–697.

    Article  CAS  PubMed  Google Scholar 

  6. Billstrom R, Johansson B, Fioretos T, Garwicz S, Malm C, Zettervall O et al. Poor survival in t(8;21) (q22;q22)-associated acute myeloid leukaemia with leukocytosis. Eur J Haematol 1997; 59: 47–52.

    Article  CAS  PubMed  Google Scholar 

  7. Schoch C, Haase D, Haferlach T, Gudat H, Buchner T, Freund M et al. Fifty-one patients with acute myeloid leukemia and translocation t(8;21)(q22;q22): an additional deletion in 9q is an adverse prognostic factor. Leukemia 1996; 10: 1288–1295.

    CAS  PubMed  Google Scholar 

  8. Byrd JC, Weiss RB, Arthur DC, Lawrence D, Baer MR, Davey F et al. Extramedullary leukemia adversely affects hematologic complete remission rate and overall survival in patients with t(8;21)(q22;q22): results from Cancer and Leukemia Group B 8461. J Clin Oncol 1997; 15: 466–475.

    Article  CAS  PubMed  Google Scholar 

  9. Nguyen S, Leblanc T, Fenaux P, Witz F, Blaise D, Pigneux A et al. A white blood cell index as the main prognostic factor in t(8;21) acute myeloid leukemia (AML): a survey of 161 cases from the French AML Intergroup. Blood 2002; 99: 3517–3523.

    Article  CAS  PubMed  Google Scholar 

  10. Morschhauser F, Cayuela JM, Martini S, Baruchel A, Rousselot P, Socie G et al. Evaluation of minimal residual disease using reverse-transcription polymerase chain reaction in t(8;21) acute myeloid leukemia: a multicenter study of 51 patients. J Clin Oncol 2000; 18: 788–794.

    Article  CAS  PubMed  Google Scholar 

  11. Marcucci G, Livak KJ, Bi W, Strout MP, Bloomfield CD, Caligiuri MA . Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse transcription polymerase chain reaction assay. Leukemia 1998; 12: 1482–1489.

    Article  CAS  PubMed  Google Scholar 

  12. Tobal K, Yin JA . Monitoring of minimal residual disease by quantitative reverse transcriptase-polymerase chain reaction for AML1–MTG8 transcripts in AML-M2 with t(8;21). Blood 1996; 88: 3704–3709.

    CAS  PubMed  Google Scholar 

  13. Wattjes MP, Krauter J, Nagel S, Heidenreich O, Ganser A, Heil G . Comparison of nested competitive RT-PCR and real-time RT-PCR for the detection and quantification of AML1/MTG8 fusion transcripts in t(8;21) positive acute myelogenous leukemia. Leukemia 2000; 14: 329–335.

    Article  CAS  PubMed  Google Scholar 

  14. Schnittger S, Weisser M, Schoch C, Hiddemann W, Haferlach T, Kern W . New score predicting for prognosis in PML-RARA+, AML1–ETO+, or CBFBMYH11+ acute myeloid leukemia based on quantification of fusion transcripts. Blood 2003; 102: 2746–2755.

    Article  CAS  PubMed  Google Scholar 

  15. Castaigne S, Chevret S, Archimbaud E, Fenaux P, Bordessoule D, Tilly H et al. Randomized comparison of double induction and timed-sequential induction to a ‘3+7’ induction in adults with acute myeloid leukemia (AML). Long-term analysis of the Acute Leukemia French Association (ALFA) 9000 study. Blood 2004; 104: 2467–2474.

    Article  CAS  PubMed  Google Scholar 

  16. Asou H, Tashiro S, Hamamoto K, Otsuji A, Kita K, Kamada N . Establishment of a human acute myeloid leukemia cell line (Kasumi-1) with 8;21 chromosome translocation. Blood 1991; 77: 2031–2036.

    CAS  PubMed  Google Scholar 

  17. Van Dongen JJ, Macintyre EA, Gabert JA, Delabesse E, Rossi V, Saglio G et al. Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute myeloid leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia 1999; 13: 1901–1928.

    Article  CAS  PubMed  Google Scholar 

  18. Gabert J, Beillard E, van der Velden VH, Bi W, Grimwade D, Pallisgaard N et al. Standardization and quality control studies of ‘real-time’ quantitative reverse transcriptase polymerase chain reaction of fusion gene transcripts for residual disease detection in leukemia – a Europe Against Cancer program. Leukemia 2003; 17: 2318–2357.

    Article  CAS  PubMed  Google Scholar 

  19. Tobal K, Moore H, Macheta M, Yin JA . Monitoring minimal residual disease and predicting relapse in APL by quantitating PML-RARalpha transcripts with a sensitive competitive RT-PCR method. Leukemia 2001; 15: 1060–1065.

    Article  CAS  PubMed  Google Scholar 

  20. van Dongen JJ, Seriu T, Panzer-Grumayer ER, Biondi A, Pongers-Willemse MJ, Corral L et al. Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet 1998; 352: 1731–1738.

    Article  CAS  PubMed  Google Scholar 

  21. Nucifora G, Larson RA, Rowley JD . Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood 1993; 82: 712–715.

    CAS  PubMed  Google Scholar 

  22. Satake N, Maseki N, Kozu T, Sakashita A, Kobayashi H, Sakurai M et al. Disappearance of AML1–MTG8(ETO) fusion transcript in acute myeloid leukaemia patients with t(8;21) in long-term remission. Br J Haematol 1995; 91: 892–898.

    Article  CAS  PubMed  Google Scholar 

  23. Miyamoto T, Weissman IL, Akashi K . AML1/ETO-expressing nonleukemic stem cells in acute myelogenous leukemia with 8;21 chromosomal translocation. Proc Natl Acad Sci USA 2000; 97: 7521–7526.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Jurlander J, Caligiuri MA, Ruutu T, Baer MR, Strout MP, Oberkircher AR et al. Persistence of the AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8;21) leukemia. Blood 1996; 88: 2183–2191.

    CAS  PubMed  Google Scholar 

  25. Krauter J, Gorlich K, Ottmann O, Lubbert M, Dohner H, Heit W et al. Prognostic value of minimal residual disease quantification by real-time reverse transcriptase polymerase chain reaction in patients with core binding factor leukemias. J Clin Oncol 2003; 21: 4413–4422.

    Article  CAS  PubMed  Google Scholar 

  26. Marcucci G, Caligiuri MA, Dohner H, Archer KJ, Schlenk RF, Dohner K et al. Quantification of CBFbeta/MYH11 fusion transcript by real time RT-PCR in patients with INV(16) acute myeloid leukemia. Leukemia 2001; 15: 1072–1080.

    Article  CAS  PubMed  Google Scholar 

  27. Viehmann S, Teigler-Schlegel A, Bruch J, Langebrake C, Reinhardt D, Harbott J . Monitoring of minimal residual disease (MRD) by real-time quantitative reverse transcription PCR (RQ-RT-PCR) in childhood acute myeloid leukemia with AML1/ETO rearrangement. Leukemia 2003; 17: 1130–1136.

    Article  CAS  PubMed  Google Scholar 

  28. Biondi A, Valsecchi MG, Seriu T, D’Aniello E, Willemse MJ, Fasching K et al. Molecular detection of minimal residual disease is a strong predictive factor of relapse in childhood B-lineage acute lymphoblastic leukemia with medium risk features. A case control study of the International BFM study group. Leukemia 2000; 14: 1939–1943.

    Article  CAS  PubMed  Google Scholar 

  29. Miyamoto T, Nagafuji K, Harada M, Niho Y . Significance of quantitative analysis of AML1/ETO transcripts in peripheral blood stem cells from t(8;21) acute myelogenous leukemia. Leuk Lymphoma 1997; 25: 69–75.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fondation de France (comité leucémie) and by the CHRU of Lille (PHRC 1997).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Preudhomme.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leroy, H., de Botton, S., Grardel-Duflos, N. et al. Prognostic value of real-time quantitative PCR (RQ-PCR) in AML with t(8;21). Leukemia 19, 367–372 (2005). https://doi.org/10.1038/sj.leu.2403627

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403627

This article is cited by

Search

Quick links