Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Manuscript
  • Published:

Acute Non-Lymphocytic Leukemia

The histone deacetylase inhibitor valproic acid alters sensitivity towards all trans retinoic acid in acute myeloblastic leukemia cells

Abstract

Acute myeloblastic leukemia (AML) may be classified in a number of ways. Using the French American British classification, the M3 form of the disease or acute promyelocytic leukemia (APL) has been found to be sensitive in vitro and in vivo to the retinoid all trans retinoic acid (ATRA). The mechanism for this is by restoration of normal gene expression through the release of histone deacetylase complexes (HDACs). In contrast to APL, other forms of AML are either nonresponsive or show blunted responses to ATRA. We evaluated if the inhibitor of HDAC activity, valproic acid (VPA), could mimic or enhance retinoid sensitivity in the AML cell line, OCI/AML-2, and clinical samples derived from patients with AML. An Affymetrix GeneChip experiment demonstrated that VPA modulated the expression of numerous genes in OCI/AML-2 cells that were not affected by ATRA including p21, a retinoid responsive gene in APL. VPA induced p21 expression in OCI/AML-2 cells and the majority of the AML samples tested; this was associated with cell cycle arrest and apoptosis not seen with ATRA alone. The addition of ATRA to VPA accentuated many of these responses, supporting the potential beneficial combination of these drugs in the treatment of AML.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  1. Chambon P . A decade of molecular biology of retinoic acid receptors. FASEB J 1996; 10: 940–954.

    Article  CAS  PubMed  Google Scholar 

  2. Korzus E, Torchia J, Rose DW, Xu L, Kurokawa R, McInerney EM et al. Transcription factor-specific requirements for coactivators and their acetyltransferase functions. Science 1998; 279: 703–707.

    Article  CAS  PubMed  Google Scholar 

  3. Tallman MS, Andersen JW, Schiffer CA, Appelbaum FR, Feusner JH, Ogden A et al. All-trans-retinoic acid in acute promyelocytic leukemia. N Engl J Med 1997; 337: 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  4. Kakizuka A, Miller WH, Umesono K, Warrell RP, Frankel SR, Murty VV et al. Chromosomal translocation t(15;17) in human acute promyelocytic leukemia fuses RARalpha with a novel putative transcription factor PML. Cell 1991; 66: 663–674.

    Article  CAS  PubMed  Google Scholar 

  5. Lin RJ, Nagy L, Inoue S, Shao W, Miller Jr WH, Evans RM . Role of the histone deacetylase complex in acute promyelocytic leukaemia. Nature 1998; 391: 811–814.

    Article  CAS  PubMed  Google Scholar 

  6. Grignani F, De Matteis S, Nervi C, Tomassoni L, Gelmetti V, Cioce M et al. Fusion proteins of the retinoic acid receptor-alpha recruit histone deacetylase in promyelocytic leukaemia. Nature 1998; 391: 815–818.

    Article  CAS  PubMed  Google Scholar 

  7. Estey EH, Thall PF, Pierce S, Cortes J, Beran M, Kantarjian H et al. Randomized phase II study of fludarabine+cytosine arabinoside+idarubicin +/− all-trans retinoic acid +/− granulocyte colony-stimulating factor in poor prognosis newly diagnosed acute myeloid leukemia and myelodysplastic syndrome. Blood 1999; 93: 2478–2484.

    CAS  PubMed  Google Scholar 

  8. Bolanos-Meade J, Karp JE, Guo C, Sarkodee-Adoo CB, Rapoport AP, Tidwell ML et al. Timed sequential therapy of acute myelogenous leukemia in adults: a phase II study of retinoids in combination with the sequential administration of cytosine arabinoside, idarubicin and etoposide. Leuk Res 2003; 27: 313–321.

    Article  CAS  PubMed  Google Scholar 

  9. Toyota M, Kopecky KJ, Toyota MO, Jair KW, Willman CL, Issa JP . Methylation profiling in acute myeloid leukemia. Blood 2001; 97: 2823–2829.

    Article  CAS  PubMed  Google Scholar 

  10. Gelmetti V, Zhang J, Fanelli M, Minucci S, Pelicci PG, Lazar MA . Aberrant recruitment of the nuclear receptor corepressor–histone deacetylase complex by the acute myeloid leukemia fusion partner ETO. Mol Cell Biol 1998; 18: 7185–7191.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhen-Biao X, Anderson M, Diaz MO, Zeleznik-Le NJ . MLL repression domain interacts with histone deacetylases, the polycomb group proteins HPC2 and BMI-1, and the corepressor C-terminal-binding protein. Proc Natl Acad Sci USA 2003; 100: 8342–8347.

    Article  Google Scholar 

  12. He LZ, Tolentino T, Grayson P, Zhong S, Warrell Jr RP, Rifkind RA et al. Histone deacetylase inhibitors induce remission in transgenic models of therapy-resistant acute promyelocytic leukemia. J Clin Invest 2001; 108: 1321–1330.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E et al. Interpreting patterns of gene expression with self-organizing maps: methods and application to hematopoietic differentiation. Proc Natl Acad Sci USA 1999; 96: 2907–2912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eisen MB, Spellman PT, Brown PO, Botstein D . Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci USA 1998; 95: 14863–14868.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sambrook J, Fritsch EF, Maniatis T . Molecular Cloning. A Laboratory Manual. 2nd edn. New York: Cold Spring Harbour Laboratory Press, 1989.

    Google Scholar 

  16. Crissman HA, Steinkamp JA . Cell cycle-related changes in chromatin structure detected by flow cytometry using multiple DNA fluorochromes. Eur J Histochem 1993; 37: 129–138.

    CAS  PubMed  Google Scholar 

  17. Weinmann AS, Yan PS, Oberley MJ, Huang TH, Farnham PJ . Isolating human transcription factor targets by coupling chromatin immunoprecipitation and CpG island microarray analysis. Genes Dev 2002; 16: 235–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Tohda S, Curtis JE, McCulloch EA, Minden MD . Comparison of the effects of all-trans and cis-retinoic acid on the blast stem cells of acute myeloblastic leukemia in culture. Leukemia 1992; 6: 656–661.

    CAS  PubMed  Google Scholar 

  19. el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. WAF1, a potential mediator of p53 tumor suppression. Cell 1993; 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  20. Richon VM, Sandhoff TW, Rifkind RA, Marks PA . Histone deacetylase inhibitor selectively induces p21WAF1 expression and gene-associated histone acetylation. Proc Natl Acad Sci USA 2000; 97: 10014–10019.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Warrell Jr RP, Maslak P, Eardley A, Heller G, Miller WH, Frankell SR . Treatment of acute promyelocytic leukemia with all trans retinoic acid: an update of the New York experience. Leukemia 1994; 8: 929–933.

    PubMed  Google Scholar 

  22. Marks PA, Miller T, Richon VM . Histone deacetylases. Curr Opin Pharmacol 2003; 3: 344–351.

    Article  CAS  PubMed  Google Scholar 

  23. Ferrara FF, Fazi F, Bianchini A, Padula F, Gelmetti V, Minucci S et al. Histone deacetylase-targeted treatment restores retinoic acid signaling and differentiation in acute myeloid leukemia. Cancer Res 2001; 61: 2–7.

    PubMed  Google Scholar 

  24. Bartek J, Lukas J . Pathways governing G1/S transition and their response to DNA damage. FEBS Lett 2001; 490: 117–122.

    Article  CAS  PubMed  Google Scholar 

  25. Dragnev KH, Freemantle SJ, Spinella MJ, Dmitrovsky E . Cyclin proteolysis as a retinoid cancer prevention mechanism. Ann NY Acad Sci 2001; 952: 13–22.

    Article  CAS  PubMed  Google Scholar 

  26. Kawagoe R, Kawagoe H, Sano K . Valproic acid induces apoptosis in human leukemia cells by stimulating both caspase-dependent and -independent apoptotic signaling pathways. Leuk Res 2002; 26: 495–502.

    Article  CAS  PubMed  Google Scholar 

  27. Kuendgen A, Strupp C, Aivado M, Bernhardt A, Hildebrandt B, Haas R et al. Treatment of myelodysplastic syndromes with valproic acid alone or in combination with all-trans retinoic acid. Blood 2004; 104: 1266–1269.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Leukemia Research Fund of Canada and the National Cancer Institute of Canada. MDM is the Philip Orsino Chair in Leukemia Research at the Princess Margaret Hospital/University Health Network. MR Trus was supported through the Leukemia Research Fund of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M D Minden.

Additional information

For simplicity of nomenclature, the M3 form of leukemia will be referred to as acute promyelocytic leukemia (APL) and non-APL forms of acute myeloblastic leukemia (AML) will be referred to as AML. p21=p21WAF1/KIP.

Supplementary Information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trus, M., Yang, L., Suarez Saiz, F. et al. The histone deacetylase inhibitor valproic acid alters sensitivity towards all trans retinoic acid in acute myeloblastic leukemia cells. Leukemia 19, 1161–1168 (2005). https://doi.org/10.1038/sj.leu.2403773

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2403773

Keywords

This article is cited by

Search

Quick links