Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Chronic Lymphocytic Leukemia

The Akt signaling pathway determines the different proliferative capacity of chronic lymphocytic leukemia B-cells from patients with progressive and stable disease

Abstract

Chronic lymphocytic leukemia (CLL) B-cells are hyporesponsive to many proliferative signals that induce activation of normal B-lymphocytes. However, a heterogeneous response has recently been observed with immunostimulatory CpG-oligodeoxynucleotides (CpG ODN). We now show that CpG ODN induce proliferation mainly in CLL B-cells from patients with progressive disease and unmutated immunoglobulin VH genes, whereas G1/S cell cycle arrest and apoptosis are induced in leukemic B-cells from stable/VH mutated CLL. Examination of early signaling events demonstrated that all CLL B-cells respond to CpG ODN stimulation by degradation of the NF-κB inhibitor IκB and activation of the Akt, ERK, JNK and p38 MAPK kinases, but the magnitude and duration of the signaling response was greater in the proliferating cases. Pharmacological inhibition of these pathways showed that simultaneous activation of Akt, ERK and JNK is required for cell cycle progression and proliferation. Conversely, introduction of constitutively active Akt in nonproliferating CLL B-cells resulted in induction of cyclin A following CpG ODN stimulation, indicating that increased Akt activation is sufficient to overcome the hyporesponsiveness of these cells to proliferative signals. Thus, the magnitude of Akt signaling may determine the distinct responses observed in leukemic B-cells belonging to the different prognostic subgroups.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Rai KR, Wasil T, Iqbal U, Driscoll N, Patel D, Janson D et al. Clinical staging and prognostic markers in chronic lymphocytic leukemia. Hematol Oncol Clin N Am 2004; 18: 795–805.

    Article  Google Scholar 

  2. Chiorazzi N, Ferrarini M . B cell chronic lymphocytic leukemia: lessons learned from studies of the B cell antigen receptor. Annu Rev Immunol 2003; 21: 841–894.

    Article  CAS  PubMed  Google Scholar 

  3. Damle RN, Wasil T, Fais F, Ghiotto F, Valetto A, Allen SL et al. Ig V gene mutation status and CD38 expression as novel prognostic indicators in chronic lymphocytic leukemia. Blood 1999; 94: 1840–1847.

    CAS  PubMed  Google Scholar 

  4. Hamblin TJ, Davis Z, Gardiner A, Oscier DG, Stevenson FK . Unmutated Ig V(H) genes are associated with a more aggressive form of chronic lymphocytic leukemia. Blood 1999; 94: 1848–1854.

    CAS  PubMed  Google Scholar 

  5. Rosenwald A, Alizadeh AA, Widhopf G, Simon R, Davis RE, Yu X et al. Relation of gene expression phenotype to immunoglobulin mutation genotype in B cell chronic lymphocytic leukemia. J Exp Med 2001; 194: 1639–1647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L et al. Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J Med 2000; 343: 1910–1916.

    Article  CAS  PubMed  Google Scholar 

  7. Krober A, Seiler T, Benner A, Bullinger L, Bruckle E, Lichter P et al. V(H) mutation status, CD38 expression level, genomic aberrations, and survival in chronic lymphocytic leukemia. Blood 2002; 100: 1410–1416.

    CAS  PubMed  Google Scholar 

  8. Hamblin TJ, Orchard JA, Ibbotson RE, Davis Z, Thomas PW, Stevenson FK et al. CD38 expression and immunoglobulin variable region mutations are independent prognostic variables in chronic lymphocytic leukemia, but CD38 expression may vary during the course of the disease. Blood 2002; 99: 1023–1029.

    Article  CAS  PubMed  Google Scholar 

  9. Crespo M, Bosch F, Villamor N, Bellosillo B, Colomer D, Rozman M et al. ZAP-70 expression as a surrogate for immunoglobulin-variable-region mutations in chronic lymphocytic leukemia. N Engl J Med 2003; 348: 1764–1775.

    Article  CAS  PubMed  Google Scholar 

  10. Rassenti LZ, Huynh L, Toy TL, Chen L, Keating MJ, Gribben JG et al. ZAP-70 compared with immunoglobulin heavy-chain gene mutation status as a predictor of disease progression in chronic lymphocytic leukemia. N Engl J Med 2004; 351: 893–901.

    Article  CAS  PubMed  Google Scholar 

  11. Stevenson FK, Caligaris-Cappio F . Chronic lymphocytic leukemia: revelations from the B-cell receptor. Blood 2004; 103: 4389–4395.

    Article  CAS  PubMed  Google Scholar 

  12. Messmer BT, Messmer D, Allen SL, Kolitz JE, Kudalkar P, Cesar D et al. In vivo measurements document the dynamic cellular kinetics of chronic lymphocytic leukemia B cells. J Clin Invest 2005; 115: 755–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fluckiger AC, Rossi JF, Bussel A, Bryon P, Banchereau J, Defrance T . Responsiveness of chronic lymphocytic leukemia B cells activated via surface Igs or CD40 to B-cell tropic factors. Blood 1992; 80: 3173–3181.

    CAS  PubMed  Google Scholar 

  14. Lankester AC, van Schijndel GM, van der Schoot CE, van Oers MH, van Noesel VJ, van Lier RA . Antigen receptor nonresponsiveness in chronic lymphocytic leukemia B cells. Blood 1995; 86: 1090–1097.

    CAS  PubMed  Google Scholar 

  15. Buske C, Gogowski G, Schreiber K, Rave-Frank M, Hiddemann W, Wormann B . Stimulation of B-chronic lymphocytic leukemia cells by murine fibroblasts, IL-4, anti-CD40 antibodies, and the soluble CD40 ligand. Exp Hematol 1997; 25: 329–337.

    CAS  PubMed  Google Scholar 

  16. Decker T, Schneller F, Sparwasser T, Tretter T, Lipford GB, Wagner H et al. Immunostimulatory CpG-oligonucleotides cause proliferation, cytokine production, and an immunogenic phenotype in chronic lymphocytic leukemia B cells. Blood 2000; 95: 999–1006.

    CAS  PubMed  Google Scholar 

  17. Decker T, Schneller F, Hipp S, Miething C, Jahn T, Duyster J et al. Cell cycle progression of chronic lymphocytic leukemia cells is controlled by cyclin D2, cyclin D3, cyclin-dependent kinase (cdk) 4 and the cdk inhibitor p27. Leukemia 2002; 16: 327–334.

    Article  CAS  PubMed  Google Scholar 

  18. Jahrsdorfer B, Muhlenhoff L, Blackwell SE, Wagner M, Poeck H, Hartmann E et al. B-cell lymphomas differ in their responsiveness to CpG oligodeoxynucleotides. Clin Cancer Res 2005; 11: 1490–1499.

    Article  CAS  PubMed  Google Scholar 

  19. Ahmad-Nejad P, Hacker H, Rutz M, Bauer S, Vabulas RM, Wagner H . Bacterial CpG-DNA and lipopolysaccharides activate Toll-like receptors at distinct cellular compartments. Eur J Immunol 2002; 32: 1958–1968.

    Article  CAS  PubMed  Google Scholar 

  20. Park Y, Lee SW, Sung YC . Cutting Edge: CpG DNA inhibits dendritic cell apoptosis by up-regulating cellular inhibitor of apoptosis proteins through the phosphatidylinositide-3′-OH kinase pathway. J Immunol 2002; 168: 5–8.

    Article  CAS  PubMed  Google Scholar 

  21. Yi AK, Yoon JG, Yeo SY, Hong SC, English BK, Krieg AM . Role of mitogen-activated protein kinases in CpG DNA-mediated IL-10 and IL-12 production: central role of extracellular signal-regulated kinase in the negative feedback loop of the CpG DNA-mediated Th1 response. J Immunol 2002; 168: 4711–4720.

    Article  CAS  PubMed  Google Scholar 

  22. Peng SL . Signaling in B cells via Toll-like receptors. Curr Opin Immunol 2005; 17: 230–236.

    Article  CAS  PubMed  Google Scholar 

  23. Jahrsdorfer B, Wooldridge JE, Blackwell SE, Taylor CM, Griffith TS, Link BK et al. Immunostimulatory oligodeoxynucleotides induce apoptosis of B cell chronic lymphocytic leukemia cells. J Leukoc Biol 2005; 77: 378–387.

    Article  PubMed  Google Scholar 

  24. Cheson BD, Bennett JM, Grever M, Kay N, Keating MJ, O'Brien S et al. National Cancer Institute-sponsored Working Group guidelines for chronic lymphocytic leukemia: revised guidelines for diagnosis and treatment. Blood 1996; 87: 4990–4997.

    CAS  PubMed  Google Scholar 

  25. Hartmann G, Weeratna RD, Ballas ZK, Payette P, Blackwell S, Suparto I et al. Delineation of a CpG phosphorothioate oligodeoxynucleotide for activating primate immune responses in vitro and in vivo. J Immunol 2000; 164: 1617–1624.

    Article  CAS  PubMed  Google Scholar 

  26. Castro JE, Prada CE, Aguillon RA, Kitada S, Fukuda T, Motta M et al. Thymidine-phosphorothioate oligonucleotides induce activation and apoptosis of CLL cells independently of CpG motifs or BCL-2 gene interference. Leukemia 2006; 20: 680–688.

    Article  CAS  PubMed  Google Scholar 

  27. Elias F, Flo J, Lopez RA, Zorzopulos J, Montaner A, Rodriguez JM . Strong cytosine-guanosine-independent immunostimulation in humans and other primates by synthetic oligodeoxynucleotides with PyNTTTTGT motifs. J Immunol 2003; 171: 3697–3704.

    Article  CAS  PubMed  Google Scholar 

  28. Roberts TL, Sweet MJ, Hume DA, Stacey KJ . Cutting edge: species-specific TLR9-mediated recognition of CpG and non-CpG phosphorothioate-modified oligonucleotides. J Immunol 2005; 174: 605–608.

    Article  CAS  PubMed  Google Scholar 

  29. Stetson DB, Medzhitov R . Recognition of cytosolic DNA activates an IRF3-dependent innate immune response. Immunity 2006; 24: 93–103.

    Article  CAS  PubMed  Google Scholar 

  30. Sanjuan MA, Rao N, Lai KT, Gu Y, Sun S, Fuchs A et al. CpG-induced tyrosine phosphorylation occurs via a TLR9-independent mechanism and is required for cytokine secretion. J Cell Biol 2006; 172: 1057–1068.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Sherr CJ, Roberts JM . CDK inhibitors: positive and negative regulators of G1-phase progression. Genes Dev 1999; 13: 1501–1512.

    Article  CAS  PubMed  Google Scholar 

  32. Piatelli MJ, Tanguay D, Rothstein TL, Chiles TC . Cell cycle control mechanisms in B-1 and B-2 lymphoid subsets. Immunol Res 2003; 27: 31–52.

    Article  CAS  PubMed  Google Scholar 

  33. Pouyssegur J, Lenormand P . Fidelity and spatio-temporal control in MAP kinase (ERKs) signalling. Eur J Biochem 2003; 270: 3291–3299.

    Article  CAS  PubMed  Google Scholar 

  34. Murphy LO, Smith S, Chen RH, Fingar DC, Blenis J . Molecular interpretation of ERK signal duration by immediate early gene products. Nat Cell Biol 2002; 4: 556–564.

    Article  CAS  PubMed  Google Scholar 

  35. Costello PS, Gallagher M, Cantrell DA . Sustained and dynamic inositol lipid metabolism inside and outside the immunological synapse. Nat Immunol 2002; 3: 1082–1089.

    Article  CAS  PubMed  Google Scholar 

  36. Donahue AC, Fruman DA . Proliferation and survival of activated B cells requires sustained antigen receptor engagement and phosphoinositide 3-kinase activation. J Immunol 2003; 170: 5851–5860.

    Article  CAS  PubMed  Google Scholar 

  37. Yi AK, Yoon JG, Krieg AM . Convergence of CpG DNA- and BCR-mediated signals at the c-Jun N-terminal kinase and NF-kappaB activation pathways: regulation by mitogen-activated protein kinases. Int Immunol 2003; 15: 577–591.

    Article  CAS  PubMed  Google Scholar 

  38. Gururajan M, Chui R, Karuppannan AK, Ke J, Jennings CD, Bondada S . c-Jun N-terminal kinase (JNK) is required for survival and proliferation of B-lymphoma cells. Blood 2005; 106: 1382–1391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Hideshima T, Hayashi T, Chauhan D, Akiyama M, Richardson P, Anderson K . Biologic sequelae of c-Jun NH(2)-terminal kinase (JNK) activation in multiple myeloma cell lines. Oncogene 2003; 22: 8797–8801.

    Article  CAS  PubMed  Google Scholar 

  40. Lanham S, Hamblin T, Oscier D, Ibbotson R, Stevenson F, Packham G . Differential signaling via surface IgM is associated with VH gene mutational status and CD38 expression in chronic lymphocytic leukemia. Blood 2003; 101: 1087–1093.

    Article  CAS  PubMed  Google Scholar 

  41. Chen L, Widhopf G, Huynh L, Rassenti L, Rai KR, Weiss A et al. Expression of ZAP-70 is associated with increased B-cell receptor signaling in chronic lymphocytic leukemia. Blood 2002; 100: 4609–4614.

    Article  CAS  PubMed  Google Scholar 

  42. Takeshita F, Gursel I, Ishii KJ, Suzuki K, Gursel M, Klinman DM . Signal transduction pathways mediated by the interaction of CpG DNA with Toll-like receptor 9. Semin Immunol 2004; 16: 17–22.

    Article  CAS  PubMed  Google Scholar 

  43. Grumont RJ, Rourke IJ, O'Reilly LA, Strasser A, Miyake K, Sha W et al. B lymphocytes differentially use the Rel and nuclear factor kappaB1 (NF-kappaB1) transcription factors to regulate cell cycle progression and apoptosis in quiescent and mitogen-activated cells. J Exp Med 1998; 187: 663–674.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Piatelli MJ, Wardle C, Blois J, Doughty C, Schram BR, Rothstein TL et al. Phosphatidylinositol 3-kinase-dependent mitogen-activated protein/extracellular signal-regulated kinase kinase 1/2 and NF-kappa B signaling pathways are required for B cell antigen receptor-mediated cyclin D2 induction in mature B cells. J Immunol 2004; 172: 2753–2762.

    Article  CAS  PubMed  Google Scholar 

  45. Furman RR, Asgary Z, Mascarenhas JO, Liou HC, Schattner EJ . Modulation of NF-kappa B activity and apoptosis in chronic lymphocytic leukemia B cells. J Immunol 2000; 164: 2200–2206.

    Article  CAS  PubMed  Google Scholar 

  46. Cuni S, Perez-Aciego P, Perez-Chacon G, Vargas JA, Sanchez A, Martin-Saavedra FM et al. A sustained activation of PI3K/NF-kappaB pathway is critical for the survival of chronic lymphocytic leukemia B cells. Leukemia 2004; 18: 1391–1400.

    Article  CAS  PubMed  Google Scholar 

  47. Ringshausen I, Dechow T, Schneller F, Weick K, Oelsner M, Peschel C et al. Constitutive activation of the MAPkinase p38 is critical for MMP-9 production and survival of B-CLL cells on bone marrow stromal cells. Leukemia 2004; 18: 1964–1970.

    Article  CAS  PubMed  Google Scholar 

  48. Sainz-Perez A, Gary-Gouy H, Portier A, Davi F, Merle-Beral H, Galanaud P et al. High Mda-7 expression promotes malignant cell survival and p38 MAP kinase activation in chronic lymphocytic leukemia. Leukemia 2006; 20: 498–504.

    Article  CAS  PubMed  Google Scholar 

  49. Garcia Z, Kumar A, Marques M, Cortes I, Carrera AC . Phosphoinositide 3-kinase controls early and late events in mammalian cell division. EMBO J 2006; 25: 655–661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Bichi R, Shinton SA, Martin ES, Koval A, Calin GA, Cesari R et al. Human chronic lymphocytic leukemia modeled in mouse by targeted TCL1 expression. Proc Natl Acad Sci USA 2002; 99: 6955–6960.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Zanesi N, Aqeilan R, Drusco A, Kaou M, Sevignani C, Costinan S et al. Effect of rapamycin on mouse chronic lymphocytic leukemia and the development of nonhematopoietic malignancies in Emu-TCL1 transgenic mice. Cancer Res 2006; 66: 915–920.

    Article  CAS  PubMed  Google Scholar 

  52. Decker T, Hipp S, Ringshausen I, Bogner C, Oelsner M, Schneller F et al. Rapamycin-induced G1 arrest in cycling B-CLL cells is associated with reduced expression of cyclin D3, cyclin E, cyclin A, and survivin. Blood 2003; 101: 278–285.

    Article  CAS  PubMed  Google Scholar 

  53. Barragan M, Bellosillo B, Campas C, Colomer D, Pons G, Gil J . Involvement of protein kinase C and phosphatidylinositol 3-kinase pathways in the survival of B-cell chronic lymphocytic leukemia cells. Blood 2002; 99: 2969–2976.

    Article  CAS  PubMed  Google Scholar 

  54. Jones DT, Ganeshaguru K, Anderson RJ, Jackson TR, Bruckdorfer KR, Low SY et al. Albumin activates the AKT signaling pathway and protects B-chronic lymphocytic leukemia cells from chlorambucil- and radiation-induced apoptosis. Blood 2003; 101: 3174–3180.

    Article  CAS  PubMed  Google Scholar 

  55. Petlickovski A, Laurenti L, Li X, Marietti S, Chiusolo P, Sica S et al. Sustained signaling through the B-cell receptor induces Mcl-1 and promotes survival of chronic lymphocytic leukemia B-cells. Blood 2005; 105: 4820–4827.

    Article  CAS  PubMed  Google Scholar 

  56. Bernasconi NL, Onai N, Lanzavecchia A . A role for Toll-like receptors in acquired immunity: up-regulation of TLR9 by BCR triggering in naive B cells and constitutive expression in memory B cells. Blood 2003; 101: 4500–4504.

    Article  CAS  PubMed  Google Scholar 

  57. Jahrsdorfer B, Jox R, Muhlenhoff L, Tschoep K, Krug A, Rothenfusser S et al. Modulation of malignant B cell activation and apoptosis by bcl-2 antisense ODN and immunostimulatory CpG ODN. J Leukoc Biol 2002; 72: 83–92.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by The Leukemia & Lymphoma Society Translational Research Program (grant 6043-06 to DGE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D G Efremov.

Additional information

Supplementary Information accompanies the paper on the Leukemia website (http://www.nature.com/leu)

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Longo, P., Laurenti, L., Gobessi, S. et al. The Akt signaling pathway determines the different proliferative capacity of chronic lymphocytic leukemia B-cells from patients with progressive and stable disease. Leukemia 21, 110–120 (2007). https://doi.org/10.1038/sj.leu.2404417

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404417

Keywords

This article is cited by

Search

Quick links