Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Stem Cells

Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth

Abstract

Mesenchymal stem cells (MSC) have received much attention in the field of hematopoietic stem cell transplantation because not only do they support hematopoiesis but also exhibit a profound immunosuppressive activity that can be exploited to prevent undesired alloreactivity. We have previously shown that their immunosuppressive activity is mainly exerted at the level of T-cell proliferation. Here, we show that MSC exhibit a similar antiproliferative activity on tumor cells of hematopoietic and non hematopoietic origin. In vitro, MSC produced the transient arrest of tumor cells in the G1 phase of cell cycle; this was accompanied by a reduction in the apoptotic rate even when survival factors were limiting. However, when tumor cells were injected into non-obese diabetic–severe combined immunodeficient mice in conjunction with MSC, their growth was much faster as compared to the group receiving only tumor cells. To explain the discrepancy between the in vitro and in vivo behavior, we suggest that MSC have the ability to form a cancer stem cell niche in which tumor cells can preserve the potential to proliferate and sustain the malignant process. We conclude that the clinical use of MSC in conditions in which a malignant disease is involved should be handled with extreme caution.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD et al. Multilineage potential of adult human mesenchymal stem cells. Science 1999; 284: 143–147.

    Article  CAS  PubMed  Google Scholar 

  2. Horwitz EM, Le Blanc K, Dominici M, Mueller I, Slaper-Cortenbach I, Marini FC et al. Clarification of the nomenclature for MSC: The International Society for Cellular Therapy position statement. Cytotherapy 2005; 7: 393–395.

    Article  CAS  PubMed  Google Scholar 

  3. Calvi LM, Adams GB, Weibrecht KW, Weber JM, Olson DP, Knight MC et al. Osteoblastic cells regulate the haematopoietic stem cell niche. Nature 2003; 425: 841–846.

    Article  CAS  PubMed  Google Scholar 

  4. Zhang J, Niu C, Ye L, Huang H, He X, Tong WG et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836–841.

    Article  CAS  PubMed  Google Scholar 

  5. Dazzi F, Ramasamy R, Glennie S, Jones SP, Roberts I . The role of mesenchymal stem cells in haemopoiesis. Blood Rev 2005; 20: 161–171.

    Article  PubMed  Google Scholar 

  6. Glennie S, Soeiro I, Dyson PJ, Lam EW, Dazzi F . Bone marrow mesenchymal stem cells induce division arrest anergy of activated T cells. Blood 2005; 105: 2821–2827.

    Article  CAS  PubMed  Google Scholar 

  7. Koc ON, Gerson SL, Cooper BW, Dyhouse SM, Haynesworth SE, Caplan AI et al. Rapid hematopoietic recovery after coinfusion of autologous-blood stem cells and culture-expanded marrow mesenchymal stem cells in advanced breast cancer patients receiving high-dose chemotherapy. J Clin Oncol 2000; 18: 307–316.

    Article  CAS  PubMed  Google Scholar 

  8. Lee ST, Jang JH, Cheong JW, Kim JS, Maemg HY, Hahn JS et al. Treatment of high-risk acute myelogenous leukaemia by myeloablative chemoradiotherapy followed by co-infusion of T cell-depleted haematopoietic stem cells and culture-expanded marrow mesenchymal stem cells from a related donor with one fully mismatched human leucocyte antigen haplotype. Br J Haematol 2002; 118: 1128–1131.

    Article  PubMed  Google Scholar 

  9. Le Blanc K, Rasmusson I, Sundberg B, Gotherstrom C, Hassan M, Uzunel M et al. Treatment of severe acute graft-versus-host disease with third party haploidentical mesenchymal stem cells. Lancet 2004; 363: 1439–1441.

    Article  PubMed  Google Scholar 

  10. Olumi AF, Grossfeld GD, Hayward SW, Carroll PR, Tlsty TD, Cunha GR . Carcinoma-associated fibroblasts direct tumor progression of initiated human prostatic epithelium. Cancer Res 1999; 59: 5002–5011.

    CAS  PubMed  Google Scholar 

  11. Allinen M, Beroukhim R, Cai L, Brennan C, Lahti-Domenici J, Huang H et al. Molecular characterization of the tumor microenvironment in breast cancer. Cancer Cell 2004; 6: 17–32.

    Article  CAS  PubMed  Google Scholar 

  12. Maestroni GJ, Hertens E, Galli P . Factor(s) from nonmacrophage bone marrow stromal cells inhibit Lewis lung carcinoma and B16 melanoma growth in mice. Cell Mol Life Sci 1999; 55: 663–667.

    Article  CAS  PubMed  Google Scholar 

  13. Nakamura K, Ito Y, Kawano Y, Kurozumi K, Kobune M, Tsuda H et al. Antitumor effect of genetically engineered mesenchymal stem cells in a rat glioma model. Gene Ther 2004; 11: 1155–1164.

    Article  CAS  PubMed  Google Scholar 

  14. Ohlsson LB, Varas L, Kjellman C, Edvardsen K, Lindvall M . Mesenchymal progenitor cell-mediated inhibition of tumor growth in vivo and in vitro in gelatin matrix. Exp Mol Pathol 2003; 75: 248–255.

    Article  CAS  PubMed  Google Scholar 

  15. Sato T, Sakai T, Noguchi Y, Takita M, Hirakawa S, Ito A . Tumor-stromal cell contact promotes invasion of human uterine cervical carcinoma cells by augmenting the expression and activation of stromal matrix metalloproteinases. Gynecol Oncol 2004; 92: 47–56.

    Article  CAS  PubMed  Google Scholar 

  16. Zhu W, Xu W, Jiang R, Qian H, Chen M, Hu J et al. Mesenchymal stem cells derived from bone marrow favor tumor cell growth in vivo. Exp Mol Pathol 2006; 80: 267–274.

    Article  CAS  PubMed  Google Scholar 

  17. Djouad F, Plence P, Bony C, Tropel P, Apparailly F, Sany J et al. Immunosuppressive effect of mesenchymal stem cells favors tumor growth in allogeneic animals. Blood 2003; 102: 3837–3844.

    Article  CAS  PubMed  Google Scholar 

  18. Studeny M, Marini FC, Dembinski JL, Zompetta C, Cabreira-Hansen M, Bekele BN et al. Mesenchymal stem cells: potential precursors for tumor stroma and targeted-delivery vehicles for anticancer agents. J Natl Cancer Inst 2004; 96: 1593–1603.

    Article  CAS  PubMed  Google Scholar 

  19. Pegoraro L, Matera L, Ritz J, Levis A, Palumbo A, Biagini G . Establishment of a Ph1-positive human cell line (BV173). J Natl Cancer Inst 1983; 70: 447–453.

    CAS  PubMed  Google Scholar 

  20. Lozzio CB, Lozzio BB . Human chronic myelogenous leukemia cell-line with positive Philadelphia chromosome. Blood 1975; 45: 321–334.

    CAS  PubMed  Google Scholar 

  21. Koeffler HP, Billing R, Lusis AJ, Sparkes R, Golde DW . An undifferentiated variant derived from the human acute myelogenous leukemia cell line (KG-1). Blood 1980; 56: 265–273.

    CAS  PubMed  Google Scholar 

  22. Weiss A, Wiskocil RL, Stobo JD . The role of T3 surface molecules in the activation of human T cells: a two-stimulus requirement for IL 2 production reflects events occurring at a pre-translational level. J Immunol 1984; 133: 123–128.

    CAS  PubMed  Google Scholar 

  23. Quinn LA, Moore GE, Morgan RT, Woods LK . Cell lines from human colon carcinoma with unusual cell products, double minutes, and homogeneously staining regions. Cancer Res 1979; 39: 4914–4924.

    CAS  PubMed  Google Scholar 

  24. Di Nicola M, Carlo-Stella C, Magni M, Milanesi M, Longoni PD, Matteucci P et al. Human bone marrow stromal cells suppress T-lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002; 99: 3838–3843.

    Article  CAS  PubMed  Google Scholar 

  25. Meisel R, Zibert A, Laryea M, Gobel U, Daubener W, Dilloo D . Human bone marrow stromal cells inhibit allogeneic T-cell responses by indoleamine 2,3-dioxygenase-mediated tryptophan degradation. Blood 2004; 103: 4619–4621.

    Article  CAS  PubMed  Google Scholar 

  26. Bhowmick NA, Neilson EG, Moses HL . Stromal fibroblasts in cancer initiation and progression. Nature 2004; 432: 332–337.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Gao J, Arbman G, Rearden A, Sun XF . Stromal staining for PINCH is an independent prognostic indicator in colorectal cancer. Neoplasia 2004; 6: 796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Bissell MJ, Radisky D . Putting tumors in context. Nat Rev Cancer 2001; 1: 46–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Radisky D, Muschler J, Bissell MJ . Order and disorder: the role of extracellular matrix in epithelial cancer. Cancer Invest 2002; 20: 139–153.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Drize NJ, Keller JR, Chertkov JL . Local clonal analysis of the hematopoietic system shows that multiple small short-living clones maintain life-long hematopoiesis in reconstituted mice. Blood 1996; 88: 2927–2938.

    CAS  PubMed  Google Scholar 

  31. Cunningham JJ, Roussel MF . Cyclin-dependent kinase inhibitors in the development of the central nervous system. Cell Growth Differ 2001; 12: 387–396.

    CAS  PubMed  Google Scholar 

  32. Cheng T, Rodrigues N, Shen H, Yang Y, Dombkowski D, Sykes M et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 2000; 287: 1804–1808.

    Article  CAS  PubMed  Google Scholar 

  33. Yuan Y, Shen H, Franklin DS, Scadden DT, Cheng T . In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nat Cell Biol 2004; 6: 436–442.

    Article  CAS  PubMed  Google Scholar 

  34. Wang G, Bunnell BA, Painter RG, Quiniones BC, Tom S, Lanson Jr NA et al. Adult stem cells from bone marrow stroma differentiate into airway epithelial cells: potential therapy for cystic fibrosis. Proc Natl Acad Sci USA 2005; 102: 186–191.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Leukemia Research Fund and Cancer Research-UK. R Ramasamy is supported by MOSTI Scholarship - University Putra Malaysia. I Soeiro is supported by a PhD studentship from Fundação para a Ciência e a Tecnologia, Portugal.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F Dazzi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ramasamy, R., Lam, EF., Soeiro, I. et al. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: impact on in vivo tumor growth. Leukemia 21, 304–310 (2007). https://doi.org/10.1038/sj.leu.2404489

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404489

Keywords

This article is cited by

Search

Quick links