Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Oncogenes, Fusion Genes and Tumor Suppressor Genes

Deregulation of the Wilms' tumour gene 1 protein (WT1) by BCR/ABL1 mediates resistance to imatinib in human leukaemia cells

Abstract

The Wilms' tumour gene 1 (WT1) protein is highly expressed in most leukaemias. Co-expression of WT1 and the fusion protein AML1-ETO in mice rapidly induces acute myeloid leukaemia (AML). Mechanisms behind expression of WT1, as well as consequences thereof, are still unclear. Here, we report that the fusion protein BCR/ABL1 increases expression of WT1 mRNA and protein via the phosphatidylinositol-3 kinase (PI3K)–Akt pathway. Inhibition of BCR/ABL1 or PI3K activity strongly suppressed transcription from WT1 promoter/enhancer reporters. Forced expression of BCR/ABL1 in normal human progenitor CD34+ cells increased WT1 mRNA and protein, further supporting the notion of BCR/ABL1-driven expression of WT1 in human haematopoietic cells. Forced expression of WT1 in K562 cells provided protection against cytotoxic effects of the ABL1 tyrosine kinase inhibitor imatinib, as judged by effects on viability measured by trypan blue exclusion, metabolic activity, annexin V and DAPI (4′, 6-diamidino-2-phenylindole) staining. None of the isoforms provided any detectable protection against apoptosis induced by arsenic trioxide and only very weak protection against etoposide, indicating that WT1 interferes with specific apoptotic signalling pathways. Our data demonstrate that WT1 expression is induced by oncogenic signalling from BCR/ABL1 and that WT1 contributes to resistance against apoptosis induced by imatinib.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Lee SB, Haber DA . Wilms tumour and the WT1 gene. Exp Cell Res 2001; 264: 74–99.

    Article  CAS  PubMed  Google Scholar 

  2. Scharnhorst V, van der Eb AJ, Jochemsen AG . WT1 proteins: functions in growth and differentiation. Gene 2001; 273: 141–161.

    Article  CAS  PubMed  Google Scholar 

  3. Call KM, Glaser T, Ito CY, Buckler AJ, Pelletier J, Haber DA et al. Isolation and characterization of a zinc finger polypeptide gene at the human chromosome 11 Wilms' tumor locus. Cell 1990; 60: 509–520.

    Article  CAS  PubMed  Google Scholar 

  4. Gessler M, Poustka A, Cavenee W, Neve RL, Orkin SH, Bruns GAP . Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature 1990; 343: 774–778.

    Article  CAS  PubMed  Google Scholar 

  5. Fraizer GC, Patmasiriwat P, Zhang X, Saunders GF . Expression of the tumor suppressor gene WT1 in both human and mouse bone marrow. Blood 1995; 86: 4704–4706.

    CAS  PubMed  Google Scholar 

  6. Baird PN, Simmons PJ . Expression of the Wilms' tumor gene (WT1) in normal hemopoiesis. Exp Hematol 1997; 25: 312–320.

    CAS  PubMed  Google Scholar 

  7. Maurer U, Brieger J, Weidmann E, Mitrou PS, Hoelzer D, Bergmann L . The Wilms' tumor gene is expressed in a subset of CD34+ progenitors and downregulated early in the course of differentiation in vitro. Exp Hematol 1997; 25: 945–950.

    CAS  PubMed  Google Scholar 

  8. Menssen HD, Renkl HJ, Entezami M, Thiel E . Wilms' tumor gene expression in human CD34+ hematopoietic progenitors during fetal development and early clonogenic growth. Blood 1997; 89: 3486–3487.

    CAS  PubMed  Google Scholar 

  9. Hosen N, Sonoda Y, Oji Y, Kimura T, Minamiguchi H, Tamaki H et al. Very low frequencies of human normal CD34+ haematopoietic progenitor cells express the Wilms' tumour gene WT1 at levels similar to those in leukaemia cells. Br J Haematol 2002; 116: 409–420.

    Article  CAS  PubMed  Google Scholar 

  10. Hosen N, Shirakata T, Nishida S, Yanagihara M, Tsuboi A, Kawakami M et al. The Wilms' tumor gene WT1-GFP knock-in mouse reveals the dynamic regulation of WT1 expression in normal and leukemic hematopoiesis. Leukemia 2007; 21: 1783–1791.

    Article  CAS  PubMed  Google Scholar 

  11. King-Underwood L, Little S, Baker M, Clutterbuck R, Delassus S, Enver T et al. Wt1 is not essential for hematopoiesis in the mouse. Leuk Res 2005; 29: 803–812.

    Article  CAS  PubMed  Google Scholar 

  12. Alberta JA, Springett GM, Rayburn H, Natoli TA, Loring J, Kreidberg JA . Role of the WT1 tumor suppressor in murine hematopoiesis. Blood 2003; 101: 2570–2574.

    Article  CAS  PubMed  Google Scholar 

  13. Miwa H, Beran M, Saunders GF . Expression of the Wilms' tumor gene (WT1) in human leukemias. Leukemia 1992; 6: 405–409.

    CAS  PubMed  Google Scholar 

  14. Miyagi T, Ahuja H, Kubota T, Kubonishi I, Koeffler HP, Miyoshi I . Expression of the candidate Wilm's tumor gene, WT1, in human leukemia cells. Leukemia 1993; 7: 970–977.

    CAS  PubMed  Google Scholar 

  15. Inoue K, Sugiyama H, Ogawa H, Nakagawa M, Yamagami T, Miwa H et al. WT1 as a new prognostic factor and a new marker for the detection of minimal residual disease in acute leukemia. Blood 1994; 84: 3071–3079.

    CAS  PubMed  Google Scholar 

  16. Menssen HD, Renkl HJ, Rodeck U, Maurer J, Notter M, Schwartz S et al. Presence of Wilms' tumor gene (wt1) transcripts and the WT1 nuclear protein in the majority of human acute leukemias. Leukemia 1995; 9: 1060–1067.

    CAS  PubMed  Google Scholar 

  17. Tamaki H, Ogawa H, Inoue K, Soma T, Yamagami T, Miyake S et al. Increased expression of the Wilms tumor gene (WT1) at relapse in acute leukemia. Blood 1996; 88: 4396–4398.

    CAS  PubMed  Google Scholar 

  18. Phelan SA, Lindberg C, Call KM . Wilms' tumor gene, WT1, mRNA is down-regulated during induction of erythroid and megakaryocytic differentiation of K562 cells. Cell Growth Differ 1994; 5: 677–686.

    CAS  PubMed  Google Scholar 

  19. Sekiya M, Adachi M, Hinoda Y, Imai K, Yachi A . Downregulation of Wilms' tumor gene (wt1) during myelomonocytic differentiation in HL60 cells. Blood 1994; 83: 1876–1882.

    CAS  PubMed  Google Scholar 

  20. Inoue K, Tamaki H, Ogawa H, Oka Y, Soma T, Tatekawa T et al. Wilms' tumor gene (WT1) competes with differentiation-inducing signal in hematopoietic progenitor cells. Blood 1998; 91: 2969–2976.

    CAS  PubMed  Google Scholar 

  21. Svedberg H, Chylicki K, Baldetorp B, Rauscher III FJ, Gullberg U . Constitutive expression of the Wilms' tumor gene (WT1) in the leukemic cell line U937 blocks parts of the differentiation program. Oncogene 1998; 16: 925–932.

    Article  CAS  PubMed  Google Scholar 

  22. Tsuboi A, Oka Y, Ogawa H, Elisseeva OA, Tamaki H, Oji Y et al. Constitutive expression of the Wilms' tumor gene WT1 inhibits the differentiation of myeloid progenitor cells but promotes their proliferation in response to granulocyte-colony stimulating factor (G-CSF). Leuk Res 1999; 23: 499–505.

    Article  CAS  PubMed  Google Scholar 

  23. Nishida S, Hosen N, Shirakata T, Kanato K, Yanagihara M, Nakatsuka S et al. AML1-ETO rapidly induces acute myeloblastic leukemia in cooperation with the Wilms tumor gene, WT1. Blood 2006; 107: 3303–3312.

    Article  CAS  PubMed  Google Scholar 

  24. Cilloni D, Messa F, Gottardi E, Fava M, Arruga F, Defilippi I et al. Sensitivity to imatinib therapy may be predicted by testing Wilms tumor gene expression and colony growth after a short in vitro incubation. Cancer 2004; 101: 979–988.

    Article  CAS  PubMed  Google Scholar 

  25. Ren R . Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 2005; 5: 172–183.

    Article  CAS  PubMed  Google Scholar 

  26. Svensson E, Eriksson H, Gekas C, Olofsson T, Richter J, Gullberg U . DNA-binding dependent and independent functions of WT1 protein during human hematopoiesis. Exp Cell Res 2005; 308: 211–221.

    Article  CAS  PubMed  Google Scholar 

  27. Kelly PF, Vandergriff J, Nathwani A, Nienhuis AW, Vanin EF . Highly efficient gene transfer into cord blood nonobese diabetic/severe combined immunodeficiency repopulating cells by oncoretroviral vector particles pseudotyped with the feline endogenous retrovirus (RD114) envelope protein. Blood 2000; 96: 1206–1214.

    CAS  PubMed  Google Scholar 

  28. Edvardsson L, Dykes J, Olsson ML, Olofsson T . Clonogenicity, gene expression and phenotype during neutrophil versus erythroid differentiation of cytokine-stimulated CD34+ human marrow cells in vitro. Br J Haematol 2004; 127: 451–463.

    Article  PubMed  Google Scholar 

  29. Ginzinger DG . Gene quantification using real-time quantitative PCR: an emerging technology hits the mainstream. Exp Hematol 2002; 30: 503–512.

    Article  CAS  PubMed  Google Scholar 

  30. Hakansson P, Lassen C, Olofsson T, Baldetorp B, Karlsson A, Gullberg U et al. Establishment and phenotypic characterization of human U937 cells with inducible P210 BCR/ABL expression reveals upregulation of CEACAM1 (CD66a). Leukemia 2004; 18: 538–547.

    Article  CAS  PubMed  Google Scholar 

  31. Zhang X, Xing G, Fraizer GC, Saunders GF . Transactivation of an intronic hematopoietic-specific enhancer of the human Wilms' tumor 1 gene by GATA-1 and c-Myb. J Biol Chem 1997; 272: 29272–29280.

    Article  CAS  PubMed  Google Scholar 

  32. Wu Y, Fraizer GC, Saunders GF . GATA-1 transactivates the WT1 hematopoietic specific enhancer. J Biol Chem 1995; 270: 5944–5949.

    Article  CAS  PubMed  Google Scholar 

  33. Chalandon Y, Jiang X, Hazlewood G, Loutet S, Conneally E, Eaves A et al. Modulation of p210(BCR-ABL) activity in transduced primary human hematopoietic cells controls lineage programming. Blood 2002; 99: 3197–3204.

    Article  CAS  PubMed  Google Scholar 

  34. Zhao RC, Jiang Y, Verfaillie CM . A model of human p210(bcr/ABL)-mediated chronic myelogenous leukemia by transduction of primary normal human CD34(+) cells with a BCR/ABL-containing retroviral vector. Blood 2001; 97: 2406–2412.

    Article  CAS  PubMed  Google Scholar 

  35. Algar EM, Khromykh T, Smith SI, Blackburn DM, Bryson GJ, Smith PJ . A WT1 antisense oligonucleotide inhibits proliferation and induces apoptosis in myeloid leukaemia cell lines. Oncogene 1996; 12: 1005–1014.

    CAS  PubMed  Google Scholar 

  36. Yamagami T, Sugiyama H, Inoue K, Ogawa H, Tatekawa T, Hirata M et al. Growth inhibition of human leukemic cells by WT1 (Wilms tumor gene) antisense oligodeoxynucleotides: implications for the involvement of WT1 in leukemogenesis. Blood 1996; 87: 2878–2884.

    CAS  PubMed  Google Scholar 

  37. Ito K, Oji Y, Tatsumi N, Shimizu S, Kanai Y, Nakazawa T et al. Antiapoptotic function of 17AA(+)WT1 (Wilms' tumor gene) isoforms on the intrinsic apoptosis pathway. Oncogene 2006; 25: 4217–4229.

    Article  CAS  PubMed  Google Scholar 

  38. Miller Jr WH, Schipper HM, Lee JS, Singer J, Waxman S . Mechanisms of action of arsenic trioxide. Cancer Res 2002; 62: 3893–3903.

    CAS  PubMed  Google Scholar 

  39. Glienke W, Chow KU, Bauer N, Bergmann L . Down-regulation of wt1 expression in leukemia cell lines as part of apoptotic effect in arsenic treatment using two compounds. Leuk Lymphoma 2006; 47: 1629–1638.

    Article  CAS  PubMed  Google Scholar 

  40. Fukumi S, Horiguchi-Yamada J, Nakada S, Nagai M, Ohno T, Yamada H . Differential responses of Bcl-2 family genes to etoposide in chronic myeloid leukemia K562 cells. Mol Cell Biochem 2000; 206: 43–50.

    Article  CAS  PubMed  Google Scholar 

  41. Floros KV, Thomadaki H, Florou D, Talieri M, Scorilas A . Alterations in mRNA expression of apoptosis-related genes BCL2, BAX, FAS, caspase-3, and the novel member BCL2L12 after treatment of human leukemic cell line HL60 with the antineoplastic agent etoposide. Ann NY Acad Sci 2006; 1090: 89–97.

    Article  CAS  PubMed  Google Scholar 

  42. Chalandon Y, Jiang X, Christ O, Loutet S, Thanopoulou E, Eaves A et al. BCR-ABL-transduced human cord blood cells produce abnormal populations in immunodeficient mice. Leukemia 2005; 19: 442–448.

    Article  CAS  PubMed  Google Scholar 

  43. Skorski T, Kanakaraj P, Nieborowska-Skorska M, Ratajczak MZ, Wen SC, Zon G et al. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 1995; 86: 726–736.

    CAS  PubMed  Google Scholar 

  44. Stokoe D . The phosphoinositide 3-kinase pathway and cancer. Expert Rev Mol Med 2005; 7: 1–22.

    Article  PubMed  Google Scholar 

  45. Blume-Jensen P, Hunter T . Oncogenic kinase signalling. Nature 2001; 411: 355–365.

    Article  CAS  PubMed  Google Scholar 

  46. Tuna M, Chavez-Reyes A, Tari AM . HER2/neu increases the expression of Wilms' Tumor 1 (WT1) protein to stimulate S-phase proliferation and inhibit apoptosis in breast cancer cells. Oncogene 2005; 24: 1648–1652.

    Article  CAS  PubMed  Google Scholar 

  47. Bowman T, Garcia R, Turkson J, Jove R . STATs in oncogenesis. Oncogene 2000; 19: 2474–2488.

    Article  CAS  PubMed  Google Scholar 

  48. Fraizer GC, Wu YJ, Hewitt SM, Maity T, Ton CC, Huff V . Transcriptional regulation of the human Wilms' tumor gene (WT1). Cell type-specific enhancer and promiscuous promoter. J Biol Chem 1994; 269: 8892–8900.

    CAS  PubMed  Google Scholar 

  49. Ray S, Lu Y, Kaufmann SH, Gustafson WC, Karp JE, Boldogh I et al. Genomic mechanisms of p210BCR-ABL signaling: induction of heat shock protein 70 through the GATA response element confers resistance to paclitaxel-induced apoptosis. J Biol Chem 2004; 279: 35604–35615.

    Article  CAS  PubMed  Google Scholar 

  50. Zhao W, Kitidis C, Fleming MD, Lodish HF, Ghaffari S . Erythropoietin stimulates phosphorylation and activation of GATA-1 via the PI3-kinase/AKT signaling pathway. Blood 2006; 107: 907–915.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Dame C, Kirschner KM, Bartz KV, Wallach T, Hussels CS, Scholz H . The Wilms' tumor suppressor, Wt1, is a transcriptional activator of the erythropoietin gene. Blood 2006; 107: 4282–4290.

    Article  CAS  PubMed  Google Scholar 

  52. Na IK, Kreuzer KA, Lupberger J, Dorken B, le Coutre P . RT-PCR of Wilms tumor gene transcripts (WT1) for the molecular monitoring of patients with accelerated phase bcr/abl + CML. Leuk Res 2005; 29: 343–345.

    Article  CAS  PubMed  Google Scholar 

  53. Mayo MW, Wang CY, Drouin SS, Madrid LV, Marshall AF, Reed JC et al. WT1 modulates apoptosis by transcriptionally upregulating the bcl-2 proto-oncogene. EMBO J 1999; 18: 3990–4003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Carrington D, Algar E . Overexpression of murine WT1 +/+ and −/− isoforms has no effect on chemoresistance but delays differentiation in the K562 leukemia cell line. Leuk Res 2000; 24: 927–936.

    Article  CAS  PubMed  Google Scholar 

  55. Kuroda J, Puthalakath H, Cragg MS, Kelly PN, Bouillet P, Huang DC et al. Bim and Bad mediate imatinib-induced killing of Bcr/Abl+ leukemic cells, and resistance due to their loss is overcome by a BH3 mimetic. Proc Natl Acad Sci USA 2006; 103: 14907–14912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Dr E Buchdunger (Novartis, Basel, Switzerland) for providing imatinib mesylate, Dr F Rauscher III (Philadelphia, PA, USA) for providing the WT1 cDNA, Dr C Eaves (Terry Fox Laboratory, Vancouver, Canada) for the gift of MSCV-BCR/ABL1-IRES-GFP vector and Dr G Fraizer (Houston, Texas, USA) for the gift of pCB.7PH, pCB.7e250, pCB.7e258 and pCB.7e250e258 vectors. This work was supported by grants from the Swedish Cancer Society, the Swedish Research Council (project no. 11546), the Swedish Children's Cancer Foundation, the Gunnar Nilsson Cancer Foundation, the Österlund Foundation and from Funds of Lund University Hospital.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to U Gullberg.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svensson, E., Vidovic, K., Lassen, C. et al. Deregulation of the Wilms' tumour gene 1 protein (WT1) by BCR/ABL1 mediates resistance to imatinib in human leukaemia cells. Leukemia 21, 2485–2494 (2007). https://doi.org/10.1038/sj.leu.2404924

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.leu.2404924

Keywords

This article is cited by

Search

Quick links