Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Research Article
  • Published:

Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms

Abstract

Glial fibrillary acidic protein (GFAP) is considered to be a highly specific marker for glia. Here, we report on the expression of GFAP in neurons in the human hippocampus. Intriguingly, this neuronal GFAP is coded by out-of-frame splice variants and its expression is associated with Alzheimer pathology. We identified three novel GFAP splice forms: Δ 135 nt, Δ exon 6 and Δ 164 nt. Neuronal GFAP is mainly observed in the pyramidal neurons of the hippocampus of Alzheimer and Down syndrome patients and aged controls, but not in neurons of patients suffering from hippocampal sclerosis. Apparently, the hippocampal neurons in patients with Alzheimer's disease pathology are capable of expressing glia-specific genes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Ott A, Breteler MM, van Harskamp F, Claus JJ, van der Cammen TJ, Grobbee DE et al. Prevalence of Alzheimer's disease and vascular dementia: association with education. The Rotterdam study. BMJ 1995; 310: 970–973.

    Article  CAS  PubMed Central  Google Scholar 

  2. Selkoe DJ . The cell biology of beta-amyloid precursor protein and presenilin in Alzheimer's disease. Trends Cell Biol 1998; 8: 447–453.

    Article  CAS  PubMed Central  Google Scholar 

  3. Alonso AC, Grundke-Iqbal I, Iqbal K . Alzheimer's disease hyperphosphorylated tau sequesters normal tau into tangles of filaments and disassembles microtubules. Nat Med 1996; 2: 783–787.

    Article  CAS  PubMed Central  Google Scholar 

  4. Van Leeuwen FW, De Kleijn DPV, Van den Hurk HH, Neubauer A, Sonnemans MAF, Sluijs JA et al. Frameshift mutants of β amyloid precursor protein and ubiquitin-B in Alzheimer's and Down patients. Science 1998; 279: 242–247.

    Article  CAS  PubMed Central  Google Scholar 

  5. Muramori F, Kobayashi K, Nakamura I . A quantitative study of neurofibrillary tangles, senile plaques and astrocytes in the hippocampal subdivisions and entorhinal cortex in Alzheimer's disease, normal controls and non-Alzheimer neuropsychiatric diseases. Psychiatry Clin Neurosci 1998; 52: 593–599.

    Article  CAS  PubMed Central  Google Scholar 

  6. Hanzel DK, Trojanowski JQ, Johnston RF, Loring JF . High-throughput quantitative histological analysis of Alzheimer's disease pathology using a confocal digital microscanner. Nat Biotechnol 1999; 17: 53–57.

    Article  CAS  Google Scholar 

  7. Beach TG, Walker R, McGeer EG . Patterns of gliosis in Alzheimer's disease and aging cerebrum. Glia 1989; 2: 420–436.

    Article  CAS  Google Scholar 

  8. Van Leeuwen FW, Burbach JPH, Hol EM . Mutations in RNA: a first example of molecular misreading in Alzheimer's disease. Trends Neurosci 1998; 21: 331–335.

    Article  CAS  PubMed Central  Google Scholar 

  9. Van Leeuwen FW, Fischer DF, Kamel D, Sluijs JA, Sonnemans MAF, Benne R et al. Molecular misreading: a new type of transcript mutation expressed during aging. Neurobiol Aging 2000; 21: 879–891.

    Article  CAS  PubMed Central  Google Scholar 

  10. Hol EM, Neubauer A, De Kleijn DPV, Sluijs JA, Ramdjielal RDJ, Sonnemans MAF et al. Dinucleotide deletions in neuronal transcripts: a novel type of mutation in non-familial Alzheimer's disease and Down syndrome patients. Prog Brain Res 1998; 117: 379–395.

    Article  CAS  PubMed Central  Google Scholar 

  11. Evans DAP, Van der Kleij AAM, Sonnemans MAF, Burbach JPH, Van Leeuwen FW . Frameshift mutations at two hotspots in vasopressin transcripts in post-mitotic neurons. Proc Natl Acad Sci USA 1994; 91: 6059–6063.

    Article  CAS  PubMed Central  Google Scholar 

  12. Brenner M . Structure and transcriptional regulation of the GFAP gene. Brain Pathol 1994; 4: 245–257.

    Article  CAS  Google Scholar 

  13. Reeves SA, Helman LJ, Allison A, Israel MA . Molecular cloning and primary structure of human glial fibrillary acidic protein. Proc Natl Acad Sci USA 1989; 86: 5178–5182.

    Article  CAS  Google Scholar 

  14. Brenner M, Johnson AB, Boespflug-Tanguy O, Rodriguez D, Goldman JE, Messing A . Mutations in GFAP, encoding glial fibrillary acidic protein, are associated with Alexander disease. Nat Genet 2001; 27: 117–120.

    Article  CAS  Google Scholar 

  15. Aoki Y, Haginoya K, Munakata M, Yokoyama H, Nishio T, Togashi N et al. A novel mutation in glial fibrillary acidic protein gene in a patient with Alexander disease. Neurosci Lett 2001; 312: 71–74.

    Article  CAS  PubMed Central  Google Scholar 

  16. Messing A, Goldman JE, Johnson AB, Brenner M . Alexander disease: new insights from genetics. J Neuropathol Exp Neurol 2001; 60: 563–573.

    Article  CAS  PubMed Central  Google Scholar 

  17. Braak H, Braak E . Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol 1991; 82: 239–259.

    Article  CAS  Google Scholar 

  18. Thal DR, Rub U, Orantes M, Braak H . Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 2002; 58: 1791–1800.

    Article  PubMed Central  Google Scholar 

  19. Dahl D, Bignami A . Immunogenic properties of the glial fibrillary acidic protein. Brain Res 1976; 116: 150–157.

    Article  CAS  Google Scholar 

  20. Neumann M, Gabel D . Simple method for reduction of autofluorescence in fluorescence microscopy. J Histochem Cytochem 2002; 50: 437–439.

    Article  CAS  PubMed Central  Google Scholar 

  21. Jicha GA, Bowser R, Kazam IG, Davies P . Alz-50 and MC-1, a new monoclonal antibody raised to paired helical filaments, recognize conformational epitopes on recombinant tau. J Neurosci Res 1997; 48: 128–132.

    Article  CAS  PubMed Central  Google Scholar 

  22. van Den Hurk WH, Willems HJ, Bloemen M, Martens GJ . Novel frameshift mutations near short simple repeats. J Biol Chem 2001; 276: 11496–11498.

    Article  CAS  PubMed Central  Google Scholar 

  23. Seidl R, Cairns N, Lubec G . The brain in Down syndrome. J Neural Transm Suppl 2001; 61: 247–261.

    Google Scholar 

  24. Proper EA, Oestreicher AB, Jansen GH, Veelen CW, van Rijen PC, Gispen WH et al. Immunohistochemical characterization of mossy fibre sprouting in the hippocampus of patients with pharmaco-resistant temporal lobe epilepsy. Brain 2000; 123: 19–30.

    Article  PubMed Central  Google Scholar 

  25. Bender BL, Yunis EJ . Central nervous system pathology of tube-rous sclerosis in children. Ultrastruct Pathol 1980; 1: 287–299.

    Article  CAS  PubMed Central  Google Scholar 

  26. Probst A, Ulrich J, Heitz PU . Senile dementia of Alzheimer type: astroglial reaction to extracellular neurofibrillary tangles in the hippocampus. Acta Neuropathol 1982; 57: 75–79.

    Article  CAS  PubMed Central  Google Scholar 

  27. Yamaguchi H, Morimatsu M, Hirai S, Takahashi K . Alzheimer's neurofibrillary tangles are penetrated by astroglial processes and appear eosinophilic in their final stages. Acta Neuropathol 1987; 72: 214–217.

    Article  CAS  PubMed Central  Google Scholar 

  28. Feinstein DA, Weinmaster GA, Milner R . Isolation of cDNA clones encoding rat glial fibrillary acidic protein: expression in astrocytes and in Schwann cells. J Neurosci Res 1992; 32: 1–14.

    Article  CAS  PubMed Central  Google Scholar 

  29. Zelenika D, Grima B, Brenner M, Pessac B . A novel glial fibrillary acidic protein mRNA lacking exon 1. Brain Res Mol Brain Res 1995; 30: 251–258.

    Article  CAS  PubMed Central  Google Scholar 

  30. Condorelli DF, Nicoletti VG, Barresi V, Conticello SG, Caruso A, Tendi EA et al. Structural features of the rat GFAP gene and identification of a novel alternative transcript. J Neurosci Res 1999; 56: 219–228.

    Article  CAS  PubMed Central  Google Scholar 

  31. Nielsen AL, Holm IE, Johansen M, Bonven BJ, Jorgensen P, Jorgensen AL . A new splice form of glial fibrillary acidic protein, GFAP epsilon, interacts with the presenilin proteins. J Biol Chem 2002; 277: 29983–29991.

    Article  CAS  PubMed Central  Google Scholar 

  32. Mount SM . Genomic sequence, splicing, and gene annotation. Am J Hum Genet 2000; 67: 788–792.

    Article  CAS  PubMed Central  Google Scholar 

  33. Eng LF . Glial fibrillary acidic protein (GFAP): the major protein of glial intermediate filaments in differentiated astrocytes. J Neuroimmunol 1985; 8: 203–214.

    Article  CAS  Google Scholar 

  34. Gomi H, Yokoyama T, Fujimoto K, Ikeda T, Katoh A, Itoh T et al. Mice devoid of the glial fibrillary acidic protein develop normally and are susceptible to scrapie prions. Neuron 1995; 14: 29–41.

    Article  CAS  PubMed Central  Google Scholar 

  35. Pekny M, Johansson CB, Eliasson C, Stakeberg J, Wallen A, Perlmann T et al. Abnormal reaction to central nervous system injury in mice lacking glial fibrillary acidic protein and vimentin. J Cell Biol 1999; 145: 503–514.

    Article  CAS  PubMed Central  Google Scholar 

  36. Inagaki M, Nakamura Y, Takeda M, Nishimura T, Inagaki N . Glial fibrillary acidic protein: dynamic property and regulation by phosphorylation. Brain Pathol 1994; 4: 239–243.

    Article  CAS  PubMed Central  Google Scholar 

  37. Laywell ED, Rakic P, Kukekov VG, Holland EC, Steindler DA . Identification of a multipotent astrocytic stem cell in the immature and adult mouse brain. Proc Natl Acad Sci USA 2000; 97: 13883–13888.

    Article  CAS  Google Scholar 

  38. Kondo T, Raff M . Oligodendrocyte precursor cells reprogrammed to become multipotential CNS stem cells. Science 2000; 289: 1754–1757.

    Article  CAS  Google Scholar 

  39. McShea A, Harris PL, Webster KR, Wahl AF, Smith MA . Abnormal expression of the cell cycle regulators P16 and CDK4 in Alzheimer's disease. Am J Pathol 1997; 150: 1933–1939.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Vincent I, Jicha G, Rosado M, Dickson DW . Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer's disease brain. J Neurosci 1997; 17: 3588–3598.

    Article  CAS  PubMed Central  Google Scholar 

  41. Dranovsky A, Vincent I, Gregori L, Schwarzman A, Colflesh D, Enghild J et al. Cdc2 phosphorylation of nucleolin demarcates mitotic stages and Alzheimer's disease pathology. Neurobiol Aging 2001; 22: 517–528.

    Article  CAS  PubMed Central  Google Scholar 

  42. Yang Y, Geldmacher DS, Herrup K . DNA replication precedes neuronal cell death in Alzheimer's disease. J Neurosci 2001; 21: 2661–2668.

    Article  CAS  PubMed Central  Google Scholar 

  43. Lam YA, Pickart CM, Alban A, Landon M, Jamieson C, Ramage R et al. Inhibition of the ubiquitin-proteasome system in Alzheimer's disease. Proc Natl Acad Sci USA 2000; 97: 9902–9906.

    Article  CAS  PubMed Central  Google Scholar 

  44. Lindsten K, de Vrij FM, Verhoef LG, Fischer DF, van Leeuwen FW, Hol EM et al. Mutant ubiquitin found in neurodegenerative disorders is a ubiquitin fusion degradation substrate that blocks proteasomal degradation. J Cell Biol 2002; 157: 417–427.

    Article  CAS  PubMed Central  Google Scholar 

  45. De Vrij FMS, Sluijs JA, Gregori L, Fischer DF, Hermens WTJMC, Goldgaber D et al. Mutant ubiquitin expressed in Alzheimer's disease causes neuronal death. FASEB J 2001; 15: 2680–2688.

    Article  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank the Netherlands Brain Bank team (coordinator R Ravid) for the human post-mortem brain material, CWM van Veelen and PC van Rijen for the biopsy material and P Davies for supplying the MC1 antiserum. The research is supported by HFSP (RG0148/1999-B), NWO-MW (903-51-179) and NWO-memory processes and dementia (970-10-029 and 970-10-002), EU 5th framework (QLRT-02238), Hersenstichting Nederland (H00.06). EA Proper was supported by the Epilepsy Fund of the Netherlands (96-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E M Hol.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hol, E., Roelofs, R., Moraal, E. et al. Neuronal expression of GFAP in patients with Alzheimer pathology and identification of novel GFAP splice forms. Mol Psychiatry 8, 786–796 (2003). https://doi.org/10.1038/sj.mp.4001379

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001379

Keywords

This article is cited by

Search

Quick links