Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Feature Review
  • Published:

Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response

Abstract

Genetic factors contribute to the phenotype of drug response. We systematically analyzed all available pharmacogenetic data from Medline databases (1970–2003) on the impact that genetic polymorphisms have on positive and adverse reactions to antidepressants and antipsychotics. Additionally, dose adjustments that would compensate for genetically caused differences in blood concentrations were calculated. To study pharmacokinetic effects, data for 36 antidepressants were screened. We found that for 20 of those, data on polymorphic CYP2D6 or CYP2C19 were found and that in 14 drugs such genetic variation would require at least doubling of the dose in extensive metabolizers in comparison to poor metabolizers. Data for 38 antipsychotics were examined: for 13 of those CYP2D6 and CYP2C19 genotype was of relevance. To study the effects of genetic variability on pharmacodynamic pathways, we reviewed 80 clinical studies on polymorphisms in candidate genes, but those did not for the most part reveal significant associations between neurotransmitter receptor and transporter genotypes and therapy response or adverse drug reactions. In addition associations found in one study could not be replicated in other studies. For this reason, it is not yet possible to translate pharmacogenetic parameters fully into therapeutic recommendations. At present, antidepressant and antipsychotic drug responses can best be explained as the combinatorial outcome of complex systems that interact at multiple levels. In spite of these limitations, combinations of polymorphisms in pharmacokinetic and pharmacodynamic pathways of relevance might contribute to identify genotypes associated with best and worst responders and they may also identify susceptibility to adverse drug reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 1

Similar content being viewed by others

References

  1. Murray CJ, Lopez AD . Global mortality, disability, and the contribution of risk factors: Global Burden of Disease Study. Lancet 1997; 349: 1436–1442.

    Article  CAS  PubMed  Google Scholar 

  2. Entsuah AR, Huang H, Thase ME . Response and remission rates in different subpopulations with major depressive disorder administered venlafaxine, selective serotonin reuptake inhibitors, or placebo. J Clin Psychiatry 2001; 62: 869–877.

    Article  CAS  PubMed  Google Scholar 

  3. Thase ME . New approaches to managing difficult-to-treat depressions. J Clin Psychiatry 2003; 64 (Suppl 1): 3–4.

    CAS  PubMed  Google Scholar 

  4. Thase ME . Effectiveness of antidepressants: comparative remission rates. J Clin Psychiatry 2003; 64 (Suppl 2): 3–7.

    Article  CAS  PubMed  Google Scholar 

  5. Bauer M, Whybrow PC, Angst J, Versiani M, Moller HJ . World Federation of Societies of Biological Psychiatry (WFSBP) Guidelines for Biological Treatment of Unipolar Depressive Disorders, Part 1: Acute and continuation treatment of major depressive disorder. World J Biol Psychiatry 2002; 3: 5–43.

    Article  PubMed  Google Scholar 

  6. Thase ME . Overview of antidepressant therapy. Manag Care 2001; 10: 6–9, discussion 18–22.

    CAS  PubMed  Google Scholar 

  7. Thase ME, Entsuah AR, Rudolph RL . Remission rates during treatment with venlafaxine or selective serotonin reuptake inhibitors. Br J Psychiatry 2001; 178: 234–241.

    Article  CAS  PubMed  Google Scholar 

  8. Caccia S . Biotransformation of post-clozapine antipsychotics: pharmacological implications. Clin Pharmacokinet 2000; 38: 393–414.

    Article  CAS  PubMed  Google Scholar 

  9. Caccia S . Metabolism of the newer antidepressants. An overview of the pharmacological and pharmacokinetic implications. Clin Pharmacokinet 1998; 34: 281–302.

    Article  CAS  PubMed  Google Scholar 

  10. Dahl ML . Cytochrome P450 phenotyping/genotyping in patients receiving antipsychotics: useful aid to prescribing? Clin Pharmacokinet 2002; 41: 453–470.

    Article  CAS  PubMed  Google Scholar 

  11. Bertilsson L, Dahl ML, Dalen P, Al-Shurbaji A . Molecular genetics of CYP2D6: clinical relevance with focus on psychotropic drugs. Br J Clin Pharmacol 2002; 53: 111–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rendic S . Summary of information on human CYP enzymes: human P450 metabolism data. Drug Metab Rev 2002; 34: 83–448.

    Article  CAS  PubMed  Google Scholar 

  13. Nakajima M, Yokoi T, Mizutani M, Kinoshita M, Funayama M, Kamataki T . Genetic polymorphism in the 5′-flanking region of human CYP1A2 gene: effect on the CYP1A2 inducibility in humans. J Biochem (Tokyo) 1999; 125: 803–808.

    Article  CAS  Google Scholar 

  14. Sachse C, Brockmöller J, Bauer S, Roots I . Functional significance of a C → A polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 1999; 47: 445–449.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Sachse C, Bhambra U, Smith G, Lightfoot TJ, Barrett JH, Scollay J et al. Polymorphisms in the cytochrome P450 CYP1A2 gene (CYP1A2) in colorectal cancer patients and controls: allele frequencies, linkage disequilibrium and influence on caffeine metabolism. Br J Clin Pharmacol 2003; 55: 68–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Basile VS, Ozdemir V, Masellis M, Walker ML, Meltzer HY, Lieberman JA et al. A functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene: association with tardive dyskinesia in schizophrenia. Mol Psychiatry 2000; 5: 410–417.

    Article  CAS  PubMed  Google Scholar 

  17. Shimoda K, Someya T, Morita S, Hirokane G, Yokono A, Takahashi S et al. Lack of impact of CYP1A2 genetic polymorphism (C/A polymorphism at position 734 in intron 1 and G/A polymorphism at position −2964 in the 5′-flanking region of CYP1A2) on the plasma concentration of haloperidol in smoking male Japanese with schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26: 261–265.

    Article  CAS  PubMed  Google Scholar 

  18. Schulze TG, Schumacher J, Muller DJ, Krauss H, Alfter D, Maroldt A et al. Lack of association between a functional polymorphism of the cytochrome P450 1A2 (CYP1A2) gene and tardive dyskinesia in schizophrenia. Am J Med Genet 2001; 105: 498–501.

    Article  CAS  PubMed  Google Scholar 

  19. Kirchheiner J, Klein C, Meineke I, Sasse J, Zanger UM, Murdter TE et al. Bupropion and 4-OH-bupropion pharmacokinetics in relation to genetic polymorphisms in CYP2B6. Pharmacogenetics 2003; 13: 619–626.

    Article  CAS  PubMed  Google Scholar 

  20. Lamba JK, Lin YS, Thummel K, Daly A, Watkins PB, Strom S et al. Common allelic variants of cytochrome P4503A4 and their prevalence in different populations. Pharmacogenetics 2002; 12: 121–132.

    Article  CAS  PubMed  Google Scholar 

  21. Koch I, Weil R, Wolbold R, Brockmöller J, Hustert E, Burk O et al. Interindividual variability and tissue-specificity in the expression of cytochrome P450 3A mRNA. Drug Metab Dispos 2002; 30: 1108–1114.

    Article  CAS  PubMed  Google Scholar 

  22. Sanchez C, Hyttel J . Comparison of the effects of antidepressants and their metabolites on reuptake of biogenic amines and on receptor binding. Cell Mol Neurobiol 1999; 19: 467–489.

    Article  CAS  PubMed  Google Scholar 

  23. Johansson I, Lundqvist E, Dahl ML, Ingelman-Sundberg M . PCR-based genotyping for duplicated and deleted CYP2D6 genes. Pharmacogenetics 1996; 6: 351–355.

    Article  CAS  PubMed  Google Scholar 

  24. Lovlie R, Daly AK, Matre GE, Molven A, Steen VM . Polymorphisms in CYP2D6 duplication-negative individuals with the ultrarapid metabolizer phenotype: a role for the CYP2D6*35 allele in ultrarapid metabolism? Pharmacogenetics 2001; 11: 45–55.

    Article  CAS  PubMed  Google Scholar 

  25. Raimundo S, Fischer J, Eichelbaum M, Griese E, Schwab M, Zanger U . Elucidation of the genetic basis of the common ‘intermediate metabolizer’ phenotype for drug oxidation by CYP2D6. Pharmacogenetics 2000; 10: 577–581.

    Article  CAS  PubMed  Google Scholar 

  26. Masimirembwa C, Persson I, Bertilsson L, Hasler J, Ingelman-Sundberg M . A novel mutant variant of the CYP2D6 gene (CYP2D6*17) common in a black African population: association with diminished debrisoquine hydroxylase activity. Br J Clin Pharmacol 1996; 42: 713–719.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Yokota H, Tamura S, Furuya H, Kimura S, Watanabe M, Kanazawa I et al. Evidence for a new variant CYP2D6 allele CYP2D6J in a Japanese population associated with lower in vivo rates of sparteine metabolism. Pharmacogenetics 1993; 3: 256–263.

    Article  CAS  PubMed  Google Scholar 

  28. Steiner E, Bertilsson L, Sawe J, Bertling I, Sjoqvist F . Polymorphic debrisoquin hydroxylation in 757 Swedish subjects. Clin Pharmacol Ther 1988; 44: 431–435.

    Article  CAS  PubMed  Google Scholar 

  29. Sachse C, Brockmöller J, Bauer S, Roots I . Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Kirchheiner J, Brøsen K, Dahl ML, Gram LF, Kasper S, Roots I et al. CYP2D6 and CYP2C19 genotype-based dose recommendations for antidepressants: a first step towards subpopulation-specific dosages. Acta Psychiatr Scand 2001; 104: 173–192.

    Article  CAS  PubMed  Google Scholar 

  31. Bradford LD . CYP2D6 allele frequency in European Caucasians, Asians, Africans and their descendants. Pharmacogenomics 2002; 3: 229–243.

    Article  CAS  PubMed  Google Scholar 

  32. Xie HG, Stein CM, Kim RB, Wilkinson GR, Flockhart DA, Wood AJ . Allelic, genotypic and phenotypic distributions of S-mephenytoin 4′-hydroxylase (CYP2C19) in healthy Caucasian populations of European descent throughout the world. Pharmacogenetics 1999; 9: 539–549.

    CAS  PubMed  Google Scholar 

  33. Rudorfer MV, Potter WZ . Metabolism of tricyclic antidepressants. Cell Mol Neurobiol 1999; 19: 373–409.

    Article  CAS  PubMed  Google Scholar 

  34. Lane RM, Baker GB . Chirality and drugs used in psychiatry: nice to know or need to know? Cell Mol Neurobiol 1999; 19: 355–372.

    Article  CAS  PubMed  Google Scholar 

  35. Baumann P, Eap CB . Enantiomeric antidepressant drugs should be considered on individual merit. Hum Psychopharmacol 2001; 16: S85–S92.

    Article  CAS  PubMed  Google Scholar 

  36. Venkatakrishnan K, Greenblatt DJ, von Moltke LL, Schmider J, Harmatz JS, Shader RI . Five distinct human cytochromes mediate amitriptyline N-demethylation in vitro: dominance of CYP 2C19 and 3A4. J Clin Pharmacol 1998; 38: 112–121.

    Article  CAS  PubMed  Google Scholar 

  37. Gram LF, Guentert TW, Grange S, Vistisen K, Brøsen K . Moclobemide, a substrate of CYP2C19 and an inhibitor of CYP2C19, CYP2D6, and CYP1A2: a panel study. Clin Pharmacol Ther 1995; 57: 670–677.

    Article  CAS  PubMed  Google Scholar 

  38. Sindrup SH, Brøsen K, Gram LF, Hallas J, Skjelbo E, Allen A et al. The relationship between paroxetine and the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 278–287.

    Article  CAS  PubMed  Google Scholar 

  39. Christensen M, Tybring G, Mihara K, Yasui-Furokori N, Carrillo JA, Ramos SI et al. Low daily 10-mg and 20-mg doses of fluvoxamine inhibit the metabolism of both caffeine (cytochrome P4501A2) and omeprazole (cytochrome P4502C19). Clin Pharmacol Ther 2002; 71: 141–152.

    Article  CAS  PubMed  Google Scholar 

  40. Laine K, Tybring G, Hartter S, Andersson K, Svensson JO, Widen J et al. Inhibition of cytochrome P4502D6 activity with paroxetine normalizes the ultrarapid metabolizer phenotype as measured by nortriptyline pharmacokinetics and the debrisoquin test. Clin Pharmacol Ther 2001; 70: 327–335.

    Article  CAS  PubMed  Google Scholar 

  41. Sindrup SH, Brøsen K, Gram LF . Pharmacokinetics of the selective serotonin reuptake inhibitor paroxetine: nonlinearity and relation to the sparteine oxidation polymorphism. Clin Pharmacol Ther 1992; 51: 288–295.

    Article  CAS  PubMed  Google Scholar 

  42. Song F, Khan KS, Dinnes J, Sutton AJ . Asymmetric funnel plots and publication bias in meta-analyses of diagnostic accuracy. Int J Epidemiol 2002; 31: 88–95.

    Article  PubMed  Google Scholar 

  43. Skinner MH, Kuan HY, Pan A, Sathirakul K, Knadler MP, Gonzales CR et al. Duloxetine is both an inhibitor and a substrate of cytochrome P4502D6 in healthy volunteers. Clin Pharmacol Ther 2003; 73: 170–177.

    Article  CAS  PubMed  Google Scholar 

  44. Caccia S . New antipsychotic agents for schizophrenia: pharmacokinetics and metabolism update. Curr Opin Investig Drugs 2002; 3: 1073–1080.

    CAS  PubMed  Google Scholar 

  45. Grozinger M, Dragicevic A, Hiemke C, Shams M, Muller MJ, Hartter S . Melperone is an inhibitor of the CYP2D6 catalyzed O-demethylation of venlafaxine. Pharmacopsychiatry 2003; 36: 3–6.

    Article  CAS  PubMed  Google Scholar 

  46. Mellström B, Bertilsson L, Lou YC, Säwe J, Sjöqvist F . Amitriptyline metabolism: relationship to polymorphic debrisoquine hydroxylation. Clin Pharmacol Ther 1983; 34: 516–520.

    Article  PubMed  Google Scholar 

  47. Mellström B, Säwe J, Bertilsson L, Sjöqvist F . Amitriptyline metabolism: association with debrisoquin hydroxylation in nonsmokers. Clin Pharmacol Ther 1986; 39: 369–371.

    Article  PubMed  Google Scholar 

  48. Balant Gorgia AE, Schulz P, Dayer P, Balant L, Kubli A, Gertsch C et al. Role of oxidation polymorphism on blood and urine concentrations of amitriptyline and its metabolites in man. Arch Psychiatr Nervenkr 1982; 232: 215–222.

    Article  CAS  PubMed  Google Scholar 

  49. Baumann P, Jonzier Perey M, Koeb L, Küpfer A, Tinguely D, Schopf J . Amitriptyline pharmacokinetics and clinical response: II. Metabolic polymorphism assessed by hydroxylation of debrisoquine and mephenytoin. Int Clin Psychopharmacol 1986; 1: 102–112.

    Article  CAS  PubMed  Google Scholar 

  50. Nielsen KK, Brøsen K, Hansen MG, Gram LF . Single-dose kinetics of clomipramine: relationship to the sparteine and S-mephenytoin oxidation polymorphisms. Clin Pharmacol Ther 1994; 55: 518–527.

    Article  CAS  PubMed  Google Scholar 

  51. Nielsen KK, Brøsen K, Gram LF . Steady-state plasma levels of clomipramine and its metabolites: impact of the sparteine/debrisoquine oxidation polymorphism. Danish University Antidepressant Group. Eur J Clin Pharmacol 1992; 43: 405–411.

    Article  CAS  PubMed  Google Scholar 

  52. DUAG. Clomipramine dose–effect study in patients with depression: Clinical end points and pharmacokinetics. Clin Pharmacol Ther 1999; 66: 152–165.

  53. Steiner E, Spina E . Differences in the inhibitory effect of cimetidine on desipramine metabolism between rapid and slow debrisoquin hydroxylators. Clin Pharmacol Ther 1987; 42: 278–282.

    Article  CAS  PubMed  Google Scholar 

  54. Spina E, Steiner E, Ericsson O, Sjöqvist F . Hydroxylation of desmethylimipramine: dependence on the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 1987; 41: 314–319.

    Article  CAS  PubMed  Google Scholar 

  55. Brøsen K, Otton SV, Gram LF . Imipramine demethylation and hydroxylation: impact of the sparteine oxidation phenotype. Clin Pharmacol Ther 1986; 40: 543–549.

    Article  PubMed  Google Scholar 

  56. Bergmann TK, Bathum L, Brosen K . Duplication of CYP2D6 predicts high clearance of desipramine but high clearance does not predict duplication of CYP2D6. Eur J Clin Pharmacol 2001; 57: 123–127.

    Article  CAS  PubMed  Google Scholar 

  57. Spina E, Gitto C, Avenoso A, Campo GM, Caputi AP, Perucca E . Relationship between plasma desipramine levels, CYP2D6 phenotype and clinical response to desipramine: a prospective study. Eur J Clin Pharmacol 1997; 51: 395–398.

    Article  CAS  PubMed  Google Scholar 

  58. Shimoda K, Morita S, Hirokane G, Yokono A, Someya T, Takahashi S . Metabolism of desipramine in Japanese psychiatric patients: the impact of CYP2D6 genotype on the hydroxylation of desipramine. Pharmacol Toxicol 2000; 86: 245–249.

    Article  CAS  PubMed  Google Scholar 

  59. Kirchheiner J, Meineke I, Muller G, Roots I, Brockmöller J . Contributions of CYP2D6, CYP2C9 and CYP2C19 to the biotransformation of E- and Z-doxepin in healthy volunteers. Pharmacogenetics 2002; 12: 571–580.

    Article  CAS  PubMed  Google Scholar 

  60. Brøsen K, Klysner R, Gram LF, Otton SV, Bech P, Bertilsson L . Steady-state concentrations of imipramine and its metabolites in relation to the sparteine/debrisoquine polymorphism. Eur J Clin Pharmacol 1986; 30: 679–684.

    Article  PubMed  Google Scholar 

  61. Dalén P, Dahl ML, Ruiz ML, Nordin J, Bertilsson L . 10-Hydroxylation of nortriptyline in white persons with 0, 1, 2, 3, and 13 functional CYP2D6 genes. Clin Pharmacol Ther 1998; 63: 444–452.

    Article  PubMed  Google Scholar 

  62. Mellström B, Bertilsson L, Säwe J, Schulz HU, Sjöqvist F . E- and Z-10-hydroxylation of nortriptyline: relationship to polymorphic debrisoquine hydroxylation. Clin Pharmacol Ther 1981; 30: 189–193.

    Article  PubMed  Google Scholar 

  63. Bertilsson L, Eichelbaum M, Mellström B, Säwe J, Schulz HU, Sjöqvist F . Nortriptyline and antipyrine clearance in relation to debrisoquine hydroxylation in man. Life Sci 1980; 27: 1673–1677.

    Article  CAS  PubMed  Google Scholar 

  64. Dahl ML, Bertilsson L, Nordin C . Steady-state plasma levels of nortriptyline and its 10-hydroxy metabolite: relationship to the CYP2D6 genotype. Psychopharmacology (Berlin) 1996; 123: 315–319.

    Article  CAS  Google Scholar 

  65. Yue QY, Zhong ZH, Tybring G, Dalén P, Dahl ML, Bertilsson L et al. Pharmacokinetics of nortriptyline and its 10-hydroxy metabolite in Chinese subjects of different CYP2D6 genotypes. Clin Pharmacol Ther 1998; 64: 384–390.

    Article  CAS  PubMed  Google Scholar 

  66. Morita S, Shimoda K, Someya T, Yoshimura Y, Kamijima K, Kato N . Steady-state plasma levels of nortriptyline and its hydroxylated metabolites in Japanese patients: impact of CYP2D6 genotype on the hydroxylation of nortriptyline. J Clin Psychopharmacol 2000; 20: 141–149.

    Article  CAS  PubMed  Google Scholar 

  67. Kirchheiner J, Muller G, Meineke I, Wernecke KD, Roots I, Brockmoller J . Effects of polymorphisms in CYP2D6, CYP2C9, and CYP2C19 on trimipramine pharmacokinetics. J Clin Psychopharmacol 2003; 23: 459–466.

    Article  CAS  PubMed  Google Scholar 

  68. Eap CB, Bender S, Gastpar M, Fischer W, Haarmann C, Powell K et al. Steady state plasma levels of the enantiomers of trimipramine and of its metabolites in CYP2D6-, CYP2C19- and CYP3A4/5-phenotyped patients. Ther Drug Monit 2000; 22: 209–214.

    Article  CAS  PubMed  Google Scholar 

  69. Sindrup SH, Brøsen K, Hansen MG, Aaes Jorgensen T, Overo KF, Gram LF . Pharmacokinetics of citalopram in relation to the sparteine and the mephenytoin oxidation polymorphisms. Ther Drug Monit 1993; 15: 11–17.

    Article  CAS  PubMed  Google Scholar 

  70. Fjordside L, Jeppesen U, Eap CB, Powell K, Baumann P, Brøsen K . The stereoselective metabolism of fluoxetine in poor and extensive metabolizers of sparteine. Pharmacogenetics 1999; 9: 55–60.

    Article  CAS  PubMed  Google Scholar 

  71. Hamelin BA, Turgeon J, Vallee F, Belanger PM, Paquet F, LeBel M . The disposition of fluoxetine but not sertraline is altered in poor metabolizers of debrisoquin. Clin Pharmacol Ther 1996; 60: 512–521.

    Article  CAS  PubMed  Google Scholar 

  72. Eap CB, Bondolfi G, Zullino D, Savary-Cosendai L, Powell-Golay K, Kosel M et al. Concentrations of the enantiomers of fluoxetine and norfluoxetine after multiple doses of fluoxetine in cytochrome P4502D6 poor and extensive metabolizers. J Clin Psychopharmacol 2001; 21: 330–334.

    Article  CAS  PubMed  Google Scholar 

  73. Spigset O, Granberg K, Hagg S, Norstrom A, Dahlqvist R . Relationship between fluvoxamine pharmacokinetics and CYP2D6/CYP2C19 phenotype polymorphisms. Eur J Clin Pharmacol 1997; 52: 129–133.

    Article  CAS  PubMed  Google Scholar 

  74. Carrillo JA, Dahl ML, Svensson JO, Alm C, Rodriguez I, Bertilsson L . Disposition of fluvoxamine in humans is determined by the polymorphic CYP2D6 and also by the CYP1A2 activity. Clin Pharmacol Ther 1996; 60: 183–190.

    Article  CAS  PubMed  Google Scholar 

  75. Spigset O, Granberg K, Hagg S, Soderstrom E, Dahlqvist R . Non-linear fluvoxamine disposition. Br J Clin Pharmacol 1998; 45: 257–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Pollock BG, Sweet RA, Kirshner M, Reynolds III CF . Bupropion plasma levels and CYP2D6 phenotype. Ther Drug Monit 1996; 18: 581–585.

    Article  CAS  PubMed  Google Scholar 

  77. Gabris G, Baumann P, Janzier-Perey MPB, Woggon B, Küpfer A . N-methylation of maprotiline in debrisoquine/mephenytoin-phenotyped depressive patients. Biochem Pharmacol 1985; 34: 409–410.

    Article  CAS  Google Scholar 

  78. Firkusny L, Gleiter CH . Maprotiline metabolism appears to co-segregate with the genetically-determined CYP2D6 polymorphic hydroxylation of debrisoquine. Br J Clin Pharmacol 1994; 37: 383–388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Mihara K, Otani K, Tybring G, Dahl ML, Bertilsson L, Kaneko S . The CYP2D6 genotype and plasma concentrations of mianserin enantiomers in relation to therapeutic response to mianserin in depressed Japanese patients. J Clin Psychopharmacol 1997; 17: 467–471.

    Article  CAS  PubMed  Google Scholar 

  80. Dahl ML, Tybring G, Elwin CE, Alm C, Andreasson K, Gyllenpalm M et al. Stereoselective disposition of mianserin is related to debrisoquin hydroxylation polymorphism. Clin Pharmacol Ther 1994; 56: 176–183.

    Article  CAS  PubMed  Google Scholar 

  81. Eap CB, Lima CA, Macciardi F, Woggon B, Powell K, Baumann P . Steady state concentrations of the enantiomers of mianserin and desmethylmianserin in poor and in homozygous and heterozygous extensive metabolizers of debrisoquine. Ther Drug Monit 1998; 20: 7–13.

    Article  CAS  PubMed  Google Scholar 

  82. Dahl ML, Voortman G, Alm C, Elwin CE, Delbressine L, Vos R et al. In vitro and in vivo studies on the disposition of mirtazapine in humans. Clin Drug Invest 1997; 13: 37–46.

    Article  CAS  Google Scholar 

  83. Härtter S, Dingemanse J, Baier D, Ziegler G, Hiemke C . The role of cytochrome P450 2D6 in the metabolism of moclobemide. Eur Neuropsychopharmacol 1996; 6: 225–230.

    Article  PubMed  Google Scholar 

  84. Schoerlin MP, Blouin RA, Pfefen JP, Guentert TW . Comparison of the pharmacokinetics of moclobemide in poor and efficient metabolizers of debrisoquine. Acta Psychiatr Scand Suppl 1990; 360: 98–100.

    Article  CAS  PubMed  Google Scholar 

  85. Barbhaiya RH, Buch AB, Greene DS . Single and multiple dose pharmacokinetics of nefazodone in subjects classified as extensive and poor metabolizers of dextromethorphan. Br J Clin Pharmacol 1996; 42: 573–581.

    Article  CAS  PubMed  Google Scholar 

  86. Mihara K, Otani K, Suzuki A, Yasui N, Nakano H, Meng X et al. Relationship between the CYP2D6 genotype and the steady-state plasma concentrations of trazodone and its active metabolite m-chlorophenylpiperazine. Psychopharmacology (Berlin) 1997; 133: 95–98.

    Article  CAS  Google Scholar 

  87. Lessard E, Yessine M, Hamelin B, O'Hara G, LeBlanc J, Turgeon J . Influence of CYP2D6 activity on the disposition and cardiovascular toxicity of the antidepressant agent venlafaxine in humans. Pharmacogenetics 1999; 9: 435–443.

    Article  CAS  PubMed  Google Scholar 

  88. Fukuda T, Yamamoto I, Nishida Y, Zhou Q, Ohno M, Takada K et al. Effect of the CYP2D6*10 genotype on venlafaxine pharmacokinetics in healthy adult volunteers. Br J Clin Pharmacol 1999; 47: 450–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Eap CB, Lessard E, Baumann P, Brawand-Amey M, Yessine MA, O'Hara G et al. Role of CYP2D6 in the stereoselective disposition of venlafaxine in humans. Pharmacogenetics 2003; 13: 39–47.

    Article  CAS  PubMed  Google Scholar 

  90. Veefkind AH, Haffmans PM, Hoencamp E . Venlafaxine serum levels and CYP2D6 genotype. Ther Drug Monit 2000; 22: 202–208.

    Article  CAS  PubMed  Google Scholar 

  91. Dahl ML, Llerena A, Bondesson U, Lindstrom L, Bertilsson L . Disposition of clozapine in man: lack of association with debrisoquine and S-mephenytoin hydroxylation polymorphisms. Br J Clin Pharmacol 1994; 37: 71–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Walter S . Bedeutung der erblichen Polymorphismen von Cytochrom-P450-2D6 für den Metabolismus und die Pharmakokinetik von Antipsychotika. Dissertation. Humboldt Universität zu Berlin, Berlin, 2000.

  93. Young D, Midha KK, Fossler MJ, Hawes EM, Hubbard JW, McKay G et al. Effect of quinidine on the interconversion kinetics between haloperidol and reduced haloperidol in humans: implications for the involvement of cytochrome P450IID6. Eur J Clin Pharmacol 1993; 44: 433–438.

    Article  CAS  PubMed  Google Scholar 

  94. Llerena A, Dahl ML, Ekqvist B, Bertilsson L . Haloperidol disposition is dependent on the debrisoquine hydroxylation phenotype: increased plasma levels of the reduced metabolite in poor metabolizers. Ther Drug Monit 1992; 14: 261–264.

    Article  CAS  PubMed  Google Scholar 

  95. Gram LF, Debruyne D, Caillard V, Boulenger JP, Lacotte J, Moulin M et al. Substantial rise in sparteine metabolic ratio during haloperidol treatment. Br J Clin Pharmacol 1989; 27: 272–275.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brockmöller J, Kirchheiner J, Schmider J, Walter S, Sachse C, Müller-Oerlinghausen B et al. The impact of the CYP2D6 polymorphism on haloperidol pharmacokinetics and outcome. Clin Pharmacol Ther 2002; 72: 438–452.

    Article  CAS  PubMed  Google Scholar 

  97. Suzuki A, Otani K, Mihara K, Yasui N, Kaneko S, Inoue Y et al. Effects of the CYP2D6 genotype on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese schizophrenic patients. Pharmacogenetics 1997; 7: 415–418.

    Article  CAS  PubMed  Google Scholar 

  98. Roh HK, Chung JY, Oh DY, Park CS, Svensson JO, Dahl ML et al. Plasma concentrations of haloperidol are related to CYP2D6 genotype at low, but not high doses of haloperidol in Korean schizophrenic patients. Br J Clin Pharmacol 2001; 52: 265–271.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mihara K, Suzuki A, Kondo T, Yasui N, Furukori H, Nagashima U et al. Effects of the CYP2D6*10 allele on the steady-state plasma concentrations of haloperidol and reduced haloperidol in Japanese patients with schizophrenia. Clin Pharmacol Ther 1999; 65: 291–294.

    Article  CAS  PubMed  Google Scholar 

  100. Shimoda K, Someya T, Morita S, Hirokane G, Noguchi T, Yokono A et al. Lower plasma levels of haloperidol in smoking than in nonsmoking schizophrenic patients. Ther Drug Monit 1999; 21: 293–296.

    Article  CAS  PubMed  Google Scholar 

  101. Someya T, Suzuki Y, Shimoda K, Hirokane G, Morita S, Yokono A et al. The effect of cytochrome P4502D6 genotypes on haloperidol metabolism: a preliminary study in a psychiatric population. Psychiatry Clin Neurosci 1999; 53: 593–597.

    Article  CAS  PubMed  Google Scholar 

  102. Ohara K, Tanabu S, Yoshida K, Ishibashi K, Ikemoto K, Shibuya H . Effects of smoking and cytochrome P450 2D6*10 allele on the plasma haloperidol concentration/dose ratio. Prog Neuropsychopharmacol Biol Psychiatry 2003; 27: 945–949.

    Article  CAS  PubMed  Google Scholar 

  103. Bagli M, Hoflich G, Rao ML, Langer M, Baumann P, Kolbinger M et al. Bioequivalence and absolute bioavailability of oblong and coated levomepromazine tablets in CYP2D6 phenotyped subjects. Int J Clin Pharmacol Ther 1995; 33: 646–652.

    CAS  PubMed  Google Scholar 

  104. Hagg S, Spigset O, Lakso HA, Dahlqvist R . Olanzapine disposition in humans is unrelated to CYP1A2 and CYP2D6 phenotypes. Eur J Clin Pharmacol 2001; 57: 493–497.

    Article  CAS  PubMed  Google Scholar 

  105. Carrillo JA, Herraiz AG, Ramos SI, Gervasini G, Vizcaino S, Benitez J . Role of the smoking-induced cytochrome P450 (CYP)1A2 and polymorphic CYP2D6 in steady-state concentration of olanzapine. J Clin Psychopharmacol 2003; 23: 119–127.

    Article  CAS  PubMed  Google Scholar 

  106. Dahl Puustinen ML, Liden A, Alm C, Nordin C, Bertilsson L . Disposition of perphenazine is related to polymorphic debrisoquin hydroxylation in human beings. Clin Pharmacol Ther 1989; 46: 78–81.

    Article  CAS  PubMed  Google Scholar 

  107. Linnet K, Wiborg O . Steady-state serum concentrations of the neuroleptic perphenazine in relation to CYP2D6 genetic polymorphism. Clin Pharmacol Ther 1996; 60: 41–47.

    Article  CAS  PubMed  Google Scholar 

  108. Desta Z, Kerbusch T, Flockhart DA . Effect of clarithromycin on the pharmacokinetics and pharmacodynamics of pimozide in healthy poor and extensive metabolizers of cytochrome P450 2D6 (CYP2D6). Clin Pharmacol Ther 1999; 65: 10–20.

    Article  CAS  PubMed  Google Scholar 

  109. Huang ML, Van Peer A, Woestenborghs R, De Coster R, Heykants J, Jansen AA et al. Pharmacokinetics of the novel antipsychotic agent risperidone and the prolactin response in healthy subjects. Clin Pharmacol Ther 1993; 54: 257–268.

    Article  CAS  PubMed  Google Scholar 

  110. Nyberg S, Dahl ML, Halldin C . A PET study of D2 and 5-HT2 receptor occupancy induced by risperidone in poor metabolizers of debrisoquin and risperidone. Psychopharmacology (Berlin) 1995; 119: 345–348.

    Article  CAS  Google Scholar 

  111. Olesen OV, Licht RW, Thomsen E, Bruun T, Viftrup JE, Linnet K . Serum concentrations and side effects in psychiatric patients during risperidone therapy. Ther Drug Monit 1998; 20: 380–384.

    Article  CAS  PubMed  Google Scholar 

  112. Roh HK, Kim CE, Chung WG, Park CS, Svensson JO, Bertilsson L . Risperidone metabolism in relation to CYP2D6*10 allele in Korean schizophrenic patients. Eur J Clin Pharmacol 2001; 57: 671–675.

    Article  CAS  PubMed  Google Scholar 

  113. Yasui-Furukori N, Mihara K, Kondo T, Kubota T, Iga T, Takarada Y et al. Effects of CYP2D6 genotypes on plasma concentrations of risperidone and enantiomers of 9-hydroxyrisperidone in Japanese patients with schizophrenia. J Clin Pharmacol 2003; 43: 122–127.

    Article  CAS  PubMed  Google Scholar 

  114. von Bahr C, Movin G, Nordin C, Liden A, Hammarlund Udenaes M, Hedberg A et al. Plasma levels of thioridazine and metabolites are influenced by the debrisoquin hydroxylation phenotype. Clin Pharmacol Ther 1991; 49: 234–240.

    Article  CAS  PubMed  Google Scholar 

  115. Eap CB, Guentert TW, Schaublin Loidl M, Stabl M, Koeb L, Powell K et al. Plasma levels of the enantiomers of thioridazine, thioridazine 2-sulfoxide, thioridazine 2-sulfone, and thioridazine 5-sulfoxide in poor and extensive metabolizers of dextromethorphan and mephenytoin. Clin Pharmacol Ther 1996; 59: 322–331.

    Article  CAS  PubMed  Google Scholar 

  116. Berecz R, de la Rubia A, Dorado P, Fernandez-Salguero P, Dahl ML, Llerena A . Thioridazine steady-state plasma concentrations are influenced by tobacco smoking and CYP2D6, but not by the CYP2C9 genotype. Eur J Clin Pharmacol 2003; 59: 45–50.

    Article  CAS  PubMed  Google Scholar 

  117. Dahl ML, Ekqvist B, Widen J, Bertilsson L . Disposition of the neuroleptic zuclopenthixol cosegregates with the polymorphic hydroxylation of debrisoquine in humans. Acta Psychiatr Scand 1991; 84: 99–102.

    Article  CAS  PubMed  Google Scholar 

  118. Linnet K, Wiborg O . Influence of Cyp2D6 genetic polymorphism on ratios of steady-state serum concentration to dose of the neuroleptic zuclopenthixol. Ther Drug Monit 1996; 18: 629–634.

    Article  CAS  PubMed  Google Scholar 

  119. Jerling M, Dahl ML, Aberg Wistedt A, Liljenberg B, Landell NE, Bertilsson L et al. The CYP2D6 genotype predicts the oral clearance of the neuroleptic agents perphenazine and zuclopenthixol. Clin Pharmacol Ther 1996; 59: 423–428.

    Article  CAS  PubMed  Google Scholar 

  120. Jaanson P, Marandi T, Kiivet RA, Vasar V, Vaan S, Svensson JO et al. Maintenance therapy with zuclopenthixol decanoate: associations between plasma concentrations, neurological side effects and CYP2D6 genotype. Psychopharmacology (Berlin) 2002; 162: 67–73.

    Article  CAS  Google Scholar 

  121. Spina E, Birgersson C, von Bahr C, Ericsson O, Mellström B, Steiner E et al. Phenotypic consistency in hydroxylation of desmethylimipramine and debrisoquine in healthy subjects and in human liver microsomes. Clin Pharmacol Ther 1984; 36: 677–682.

    Article  CAS  PubMed  Google Scholar 

  122. Haritos V, Ghabrial H, Ahokas J, Ching M . Role of cytochrome P450 2D6 (CYP2D6) in the stereospecific metabolism of E- and Z-doxepin. Pharmacogenetics 2000; 10: 591–603.

    Article  CAS  PubMed  Google Scholar 

  123. Johansson I, Lundqvist E, Bertilsson L, Dahl ML, Sjoqvist F, Ingelman Sundberg M . Inherited amplification of an active gene in the cytochrome P450 CYP2D locus as a cause of ultrarapid metabolism of debrisoquine. Proc Natl Acad Sci USA 1993; 90: 11825–11829, (see comments).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Lam YW, Gaedigk A, Ereshefsky L, Alfaro CL, Simpson J . CYP2D6 inhibition by selective serotonin reuptake inhibitors: analysis of achievable steady-state plasma concentrations and the effect of ultrarapid metabolism at CYP2D6. Pharmacotherapy 2002; 22: 1001–1006.

    Article  CAS  PubMed  Google Scholar 

  125. Jeppesen U, Gram LF, Vistisen K, Loft S, Poulsen HE, Brosen K . Dose-dependent inhibition of CYP1A2, CYP2C19 and CYP2D6 by citalopram, fluoxetine, fluvoxamine and paroxetine. Eur J Clin Pharmacol 1996; 51: 73–78.

    Article  CAS  PubMed  Google Scholar 

  126. Alfaro CL, Lam YW, Simpson J, Ereshefsky L . CYP2D6 inhibition by fluoxetine, paroxetine, sertraline, and venlafaxine in a crossover study: intraindividual variability and plasma concentration correlations. J Clin Pharmacol 2000; 40: 58–66.

    Article  CAS  PubMed  Google Scholar 

  127. Alfaro CL, Lam YW, Simpson J, Ereshefsky L . CYP2D6 status of extensive metabolizers after multiple-dose fluoxetine, fluvoxamine, paroxetine, or sertraline. J Clin Psychopharmacol 1999; 19: 155–163.

    Article  CAS  PubMed  Google Scholar 

  128. Timmer CJ, Ad Sitsen JM, Delbressine LP . Clinical pharmacokinetics of mirtazapine. Clin Pharmacokinet 2000; 38: 461–474.

    Article  CAS  PubMed  Google Scholar 

  129. Faucette SR, Hawke RL, Lecluyse EL, Shord SS, Yan B, Laethem RM et al. Validation of bupropion hydroxylation as a selective marker of human cytochrome P450 2B6 catalytic activity. Drug Metab Dispos 2000; 28: 1222–1230.

    CAS  PubMed  Google Scholar 

  130. Dostert P, Benedetti MS, Poggesi I . Review of the pharmacokinetics and metabolism of reboxetine, a selective noradrenaline reuptake inhibitor. Eur Neuropsychopharmacol 1997; 7 (Suppl 1): S23–S35, discussion S71–S73.

    Article  CAS  PubMed  Google Scholar 

  131. Otton SV, Ball SE, Cheung SW, Inaba T, Rudolph RL, Sellers EM . Venlafaxine oxidation in vitro is catalysed by CYP2D6. Br J Clin Pharmacol 1996; 41: 149–156.

    Article  CAS  PubMed  Google Scholar 

  132. Kaneko A, Lum JK, Yaviong L, Takahashi N, Ishizaki T, Bertilsson L et al. High and variable frequencies of CYP2C19 mutations: medical consequences of poor drug metabolism in Vanuatu and other Pacific islands. Pharmacogenetics 1999; 9: 581–590.

    Article  CAS  PubMed  Google Scholar 

  133. Shimoda K, Someya T, Yokono A, Morita S, Hirokane G, Takahashi S et al. The impact of CYP2C19 and CYP2D6 genotypes on metabolism of amitriptyline in Japanese psychiatric patients. J Clin Psychopharmacol 2002; 22: 371–378.

    Article  CAS  PubMed  Google Scholar 

  134. Jiang ZP, Shu Y, Chen XP, Huang SL, Zhu RH, Wang W et al. The role of CYP2C19 in amitriptyline N-demethylation in Chinese subjects. Eur J Clin Pharmacol 2002; 58: 109–113.

    Article  CAS  PubMed  Google Scholar 

  135. Yokono A, Morita S, Someya T, Hirokane G, Okawa M, Shimoda K . The effect of CYP2C19 and CYP2D6 genotypes on the metabolism of clomipramine in Japanese psychiatric patients. J Clin Psychopharmacol 2001; 21: 549–555.

    Article  CAS  PubMed  Google Scholar 

  136. Skjelbo E, Brøsen K, Hallas J, Gram LF . The mephenytoin oxidation polymorphism is partially responsible for the N-demethylation of imipramine. Clin Pharmacol Ther 1991; 49: 18–23.

    Article  CAS  PubMed  Google Scholar 

  137. Morinobu S, Tanaka T, Kawakatsu S, Totsuka S, Koyama E, Chiba K et al. Effects of genetic defects in the CYP2C19 gene on the N-demethylation of imipramine, and clinical outcome of imipramine therapy. Psychiatry Clin Neurosci 1997; 51: 253–257.

    Article  CAS  PubMed  Google Scholar 

  138. Koyama E, Tanaka T, Chiba K, Kawakatsu S, Morinobu S, Totsuka S et al. Steady-state plasma concentrations of imipramine and desipramine in relation to S-mephenytoin 4′-hydroxylation status in Japanese depressive patients. J Clin Psychopharmacol 1996; 16: 286–293.

    Article  CAS  PubMed  Google Scholar 

  139. Liu ZQ, Cheng ZN, Huang SL, Chen XP, Ou-Yang DS, Jiang CH et al. Effect of the CYP2C19 oxidation polymorphism on fluoxetine metabolism in Chinese healthy subjects. Br J Clin Pharmacol 2001; 52: 96–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Jan MW, ZumBrunnen TL, Kazmi YR, VanDenBerg CM, Desai HD, Weidler DJ et al. Pharmacokinetics of fluvoxamine in relation to CYP2C19 phenotype and genotype. Drug Metabol Drug Interact 2002; 19: 1–11.

    Article  PubMed  Google Scholar 

  141. Wang JH, Liu ZQ, Wang W, Chen XP, Shu Y, He N et al. Pharmacokinetics of sertraline in relation to genetic polymorphism of CYP2C19. Clin Pharmacol Ther 2001; 70: 42–47.

    Article  CAS  PubMed  Google Scholar 

  142. Kondo T, Tanaka O, Otani K, Mihara K, Tokinaga N, Kaneko S et al. Possible inhibitory effect of diazepam on the metabolism of zotepine, an antipsychotic drug. Psychopharmacology (Berlin) 1996; 127: 311–314.

    Article  CAS  Google Scholar 

  143. Kidd RS, Curry TB, Gallagher S, Edeki T, Blaisdell J, Goldstein JA . Identification of a null allele of CYP2C9 in an African-American exhibiting toxicity to phenytoin. Pharmacogenetics 2001; 11: 803–808.

    Article  CAS  PubMed  Google Scholar 

  144. Koyama E, Chiba K, Tani M, Ishizaki T . Identification of human cytochrome P450 isoforms involved in the stereoselective metabolism of mianserin enantiomers. J Pharmacol Exp Ther 1996; 278: 21–30.

    CAS  PubMed  Google Scholar 

  145. Spigset O, Hedenmalm K, Dahl ML, Wiholm BE, Dahlqvist R . Seizures and myoclonus associated with antidepressant treatment: assessment of potential risk factors, including CYP2D6 and CYP2C19 polymorphisms, and treatment with CYP2D6 inhibitors. Acta Psychiatr Scand 1997; 96: 379–384.

    Article  CAS  PubMed  Google Scholar 

  146. Lane HY, Hu OY, Jann MW, Deng HC, Lin HN, Chang WH . Dextromethorphan phenotyping and haloperidol disposition in schizophrenic patients. Psychiatry Res 1997; 69: 105–111.

    Article  CAS  PubMed  Google Scholar 

  147. Spina E, Ancione M, Di Rosa AE, Meduri M, Caputi AP . Polymorphic debrisoquine oxidation and acute neuroleptic-induced adverse effects. Eur J Clin Pharmacol 1992; 42: 347–348.

    Article  CAS  PubMed  Google Scholar 

  148. Meyer JW, Woggon B, Baumann P, Meyer UA . Clinical implications of slow sulphoxidation of thioridazine in a poor metabolizer of the debrisoquine type. Eur J Clin Pharmacol 1990; 39: 613–614, (letter).

    Article  CAS  PubMed  Google Scholar 

  149. Arthur H, Dahl ML, Siwers B, Sjöqvist F . Polymorphic drug metabolism in schizophrenic patients with tardive dyskinesia. J Clin Psychopharmacol 1995; 15: 211–216.

    Article  CAS  PubMed  Google Scholar 

  150. Pollock BG, Mulsant BH, Sweet RA, Rosen J, Altieri LP, Perel JM . Prospective cytochrome P450 phenotyping for neuroleptic treatment in dementia. Psychopharmacol Bull 1995; 31: 327–331.

    CAS  PubMed  Google Scholar 

  151. Scordo MG, Spina E, Romeo P, Dahl ML, Bertilsson L, Johansson I et al. CYP2D6 genotype and antipsychotic-induced extrapyramidal side effects in schizophrenic patients. Eur J Clin Pharmacol 2000; 56: 679–683.

    Article  CAS  PubMed  Google Scholar 

  152. Spina E, Sturiale V, Valvo S, Ancione M, Di Rosa AE, Meduri M et al. Debrisoquine oxidation phenotype and neuroleptic-induced dystonic reactions. Acta Psychiatr Scand 1992; 86: 364–366.

    Article  CAS  PubMed  Google Scholar 

  153. Vandel P, Haffen E, Vandel S, Bonin B, Nezelof S, Sechter D et al. Drug extrapyramidal side effects. CYP2D6 genotypes and phenotypes. Eur J Clin Pharmacol 1999; 55: 659–665.

    Article  CAS  PubMed  Google Scholar 

  154. Schillevoort I, de Boer A, van der Weide J, Steijns LS, Roos RA, Jansen PA et al. Antipsychotic-induced extrapyramidal syndromes and cytochrome P450 2D6 genotype: a case–control study. Pharmacogenetics 2002; 12: 235–240.

    Article  CAS  PubMed  Google Scholar 

  155. Armstrong M, Daly AK, Blennerhassett R, Ferrier N, Idle JR . Antipsychotic drug-induced movement disorders in schizophrenics in relation to CYP2D6 genotype. Br J Psychiatry 1997; 170: 23–26.

    Article  CAS  PubMed  Google Scholar 

  156. Andreassen OA, MacEwan T, Gulbrandsen AK, McCreadie RG, Steen VM . Non-functional CYP2D6 alleles and risk for neuroleptic-induced movement disorders in schizophrenic patients. Psychopharmacology (Berlin) 1997; 131: 174–179.

    Article  CAS  Google Scholar 

  157. Chen S, Chou WH, Blouin RA, Mao Z, Humphries LL, Meek QC et al. The cytochrome P450 2D6 (CYP2D6) enzyme polymorphism: screening costs and influence on clinical outcomes in psychiatry. Clin Pharmacol Ther 1996; 60: 522–534.

    Article  CAS  PubMed  Google Scholar 

  158. Chou WH, Yan FX, de Leon J, Barnhill J, Rogers T, Cronin M et al. Extension of a pilot study: impact from the cytochrome P450 2D6 polymorphism on outcome and costs associated with severe mental illness. J Clin Psychopharmacol 2000; 20: 246–251.

    Article  CAS  PubMed  Google Scholar 

  159. Kirchheiner J, Sasse J, Meineke I, Roots I, Brockmöller J . Trimipramine pharmacokinetics after intravenous and oral administration in carriers of CYP2D6 genotypes predicting poor, extensive and ultra-high activity. Pharmacogenetics 2003; 13: 721–728.

    Article  CAS  PubMed  Google Scholar 

  160. Minov C, Baghai TC, Schule C, Zwanzger P, Schwarz MJ, Zill P et al. Serotonin-2A-receptor and -transporter polymorphisms: lack of association in patients with major depression. Neurosci Lett 2001; 303: 119–122.

    Article  CAS  PubMed  Google Scholar 

  161. Cusin C, Serretti A, Zanardi R, Lattuada E, Rossini D, Lilli R et al. Influence of monoamine oxidase A and serotonin receptor 2A polymorphisms in SSRI antidepressant activity. Int J Neuropsychopharmacol 2002; 5: 27–35.

    Article  CAS  PubMed  Google Scholar 

  162. Sato K, Yoshida K, Takahashi H, Ito K, Kamata M, Higuchi H et al. Association between −1438G/A promoter polymorphism in the 5-HT(2A) receptor gene and fluvoxamine response in Japanese patients with major depressive disorder. Neuropsychobiology 2002; 46: 136–140.

    Article  CAS  PubMed  Google Scholar 

  163. Wu WH, Huo SJ, Cheng CY, Hong CJ, Tsai SJ . Association study of the 5-HT(6) receptor polymorphism (C267T) and symptomatology and antidepressant response in major depressive disorders. Neuropsychobiology 2001; 44: 172–175.

    Article  CAS  PubMed  Google Scholar 

  164. Ito K, Yoshida K, Sato K, Takahashi H, Kamata M, Higuchi H et al. A variable number of tandem repeats in the serotonin transporter gene does not affect the antidepressant response to fluvoxamine. Psychiatry Res 2002; 111: 235–239.

    Article  CAS  PubMed  Google Scholar 

  165. Kim DK, Lim SW, Lee S, Sohn SE, Kim S, Hahn CG et al. Serotonin transporter gene polymorphism and antidepressant response. Neuroreport 2000; 11: 215–219.

    Article  CAS  PubMed  Google Scholar 

  166. Whale R, Quested DJ, Laver D, Harrison PJ, Cowen PJ . Serotonin transporter (5-HTT) promoter genotype may influence the prolactin response to clomipramine. Psychopharmacology (Berlin) 2000; 150: 120–122.

    Article  CAS  Google Scholar 

  167. Reist C, Mazzanti C, Vu R, Tran D, Goldman D . Serotonin transporter promoter polymorphism is associated with attenuated prolactin response to fenfluramine. Am J Med Genet 2001; 105: 363–368.

    Article  CAS  PubMed  Google Scholar 

  168. Rausch JL, Johnson ME, Fei YJ, Li JQ, Shendarkar N, Hobby HM et al. Initial conditions of serotonin transporter kinetics and genotype: influence on SSRI treatment trial outcome. Biol Psychiatry 2002; 51: 723–732.

    Article  CAS  PubMed  Google Scholar 

  169. Yu YW, Tsai SJ, Chen TJ, Lin CH, Hong CJ . Association study of the serotonin transporter promoter polymorphism and symptomatology and antidepressant response in major depressive disorders. Mol Psychiatry 2002; 7: 1115–1119.

    Article  CAS  PubMed  Google Scholar 

  170. Yoshida K, Ito K, Sato K, Takahashi H, Kamata M, Higuchi H et al. Influence of the serotonin transporter gene-linked polymorphic region on the antidepressant response to fluvoxamine in Japanese depressed patients. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26: 383–386.

    Article  CAS  PubMed  Google Scholar 

  171. Smeraldi E, Zanardi R, Benedetti F, Di Bella D, Perez J, Catalano M . Polymorphism within the promoter of the serotonin transporter gene and antidepressant efficacy of fluvoxamine. Mol Psychiatry 1998; 3: 508–511.

    Article  CAS  PubMed  Google Scholar 

  172. Zanardi R, Serretti A, Rossini D, Franchini L, Cusin C, Lattuada E et al. Factors affecting fluvoxamine antidepressant activity: influence of pindolol and 5-HTTLPR in delusional and nondelusional depression. Biol Psychiatry 2001; 50: 323–330.

    Article  CAS  PubMed  Google Scholar 

  173. Pollock BG, Ferrell RE, Mulsant BH, Mazumdar S, Miller M, Sweet RA et al. Allelic variation in the serotonin transporter promoter affects onset of paroxetine treatment response in late-life depression. Neuropsychopharmacology 2000; 23: 587–590.

    Article  CAS  PubMed  Google Scholar 

  174. Zanardi R, Benedetti F, Di Bella D, Catalano M, Smeraldi E . Efficacy of paroxetine in depression is influenced by a functional polymorphism within the promoter of the serotonin transporter gene. J Clin Psychopharmacol 2000; 20: 105–107.

    Article  CAS  PubMed  Google Scholar 

  175. Benedetti F, Serretti A, Colombo C, Campori E, Barbini B, di Bella D et al. Influence of a functional polymorphism within the promoter of the serotonin transporter gene on the effects of total sleep deprivation in bipolar depression. Am J Psychiatry 1999; 156: 1450–1452.

    CAS  PubMed  Google Scholar 

  176. Baghai TC, Schule C, Zwanzger P, Minov C, Schwarz MJ, de Jonge S et al. Possible influence of the insertion/deletion polymorphism in the angiotensin I-converting enzyme gene on therapeutic outcome in affective disorders. Mol Psychiatry 2001; 6: 258–259.

    Article  CAS  PubMed  Google Scholar 

  177. Hong CJ, Wang YC, Tsai SJ . Association study of angiotensin I-converting enzyme polymorphism and symptomatology and antidepressant response in major depressive disorders. J Neural Transm 2002; 109: 1209–1214.

    Article  CAS  PubMed  Google Scholar 

  178. Serretti A, Zanardi R, Cusin C, Rossini D, Lilli R, Lorenzi C et al. No association between dopamine D(2) and D(4) receptor gene variants and antidepressant activity of two selective serotonin reuptake inhibitors. Psychiatry Res 2001; 104: 195–203.

    Article  CAS  PubMed  Google Scholar 

  179. Schumann G, Benedetti F, Voderholzer U, Kammerer N, Hemmeter U, Travers HW et al. Antidepressive response to sleep deprivation in unipolar depression is not associated with dopamine D3 receptor genotype. Neuropsychobiology 2001; 43: 127–130.

    Article  CAS  PubMed  Google Scholar 

  180. Serretti A, Benedetti F, Colombo C, Lilli R, Lorenzi C, Smeraldi E . Dopamine receptor D4 is not associated with antidepressant activity of sleep deprivation. Psychiatry Res 1999; 89: 107–114.

    Article  CAS  PubMed  Google Scholar 

  181. Zill P, Baghai TC, Zwanzger P, Schule C, Minov C, Behrens S et al. Association analysis of a polymorphism in the G-protein stimulatory alpha subunit in patients with major depression. Am J Med Genet 2002; 114: 530–532.

    Article  PubMed  Google Scholar 

  182. Zill P, Baghai TC, Zwanzger P, Schule C, Minov C, Riedel M et al. Evidence for an association between a G-protein beta3-gene variant with depression and response to antidepressant treatment. Neuroreport 2000; 11: 1893–1897.

    Article  CAS  PubMed  Google Scholar 

  183. Serretti A, Lorenzi C, Cusin C, Zanardi R, Lattuada E, Rossini D et al. SSRIs antidepressant activity is influenced by G beta 3 variants. Eur Neuropsychopharmacol 2003; 13: 117–122.

    Article  CAS  PubMed  Google Scholar 

  184. Yoshida K, Naito S, Takahashi H, Sato K, Ito K, Kamata M et al. Monoamine oxidase: a gene polymorphism, tryptophan hydroxylase gene polymorphism and antidepressant response to fluvoxamine in Japanese patients with major depressive disorder. Prog Neuropsychopharmacol Biol Psychiatry 2002; 26: 1279–1283.

    Article  CAS  PubMed  Google Scholar 

  185. Serretti A, Zanardi R, Rossini D, Cusin C, Lilli R, Smeraldi E . Influence of tryptophan hydroxylase and serotonin transporter genes on fluvoxamine antidepressant activity. Mol Psychiatry 2001; 6: 586–592.

    Article  CAS  PubMed  Google Scholar 

  186. Serretti A, Zanardi R, Cusin C, Rossini D, Lorenzi C, Smeraldi E . Tryptophan hydroxylase gene associated with paroxetine antidepressant activity. Eur Neuropsychopharmacol 2001; 11: 375–380.

    Article  CAS  PubMed  Google Scholar 

  187. Yu YW, Chen TJ, Wang YC, Liou YJ, Hong CJ, Tsai SJ . Association analysis for neuronal nitric oxide synthase gene polymorphism with major depression and fluoxetine response. Neuropsychobiology 2003; 47: 137–140.

    Article  CAS  PubMed  Google Scholar 

  188. Zill P, Baghai TC, Engel R, Zwanzger P, Schule C, Minov C et al. Beta-1-adrenergic receptor gene in major depression: influence on antidepressant treatment response. Am J Med Genet 2003; 120B: 85–89.

    Article  PubMed  Google Scholar 

  189. Yu YW, Chen TJ, Hong CJ, Chen HM, Tsai SJ . Association study of the interleukin-1 beta (C-511T) genetic polymorphism with major depressive disorder, associated symptomatology, and antidepressant response. Neuropsychopharmacology 2003; 28: 1182–1185.

    Article  CAS  PubMed  Google Scholar 

  190. Tsai SJ, Cheng CY, Yu YW, Chen TJ, Hong CJ . Association study of a brain-derived neurotrophic-factor genetic polymorphism and major depressive disorders, symptomatology, and antidepressant response. Am J Med Genet 2003; 123B: 19–22.

    Article  PubMed  Google Scholar 

  191. Lesch KP, Bengel D, Heils A, Sabol SZ, Greenberg BD, Petri S et al. Association of anxiety-related traits with a polymorphism in the serotonin transporter gene regulatory region. Science 1996; 274: 1527–1531.

    Article  CAS  PubMed  Google Scholar 

  192. Heils A, Teufel A, Petri S, Stober G, Riederer P, Bengel D et al. Allelic variation of human serotonin transporter gene expression. J Neurochem 1996; 66: 2621–2624.

    Article  CAS  PubMed  Google Scholar 

  193. Ozdemir V, Kalow W, Okey AB, Lam MS, Albers LJ, Reist C et al. Treatment-resistance to clozapine in association with ultrarapid CYP1A2 activity and the C → A polymorphism in intron 1 of the CYP1A2 gene: effect of grapefruit juice and low-dose fluvoxamine. J Clin Psychopharmacol 2001; 21: 603–607.

    Article  CAS  PubMed  Google Scholar 

  194. Kunugi H, Hattori M, Kato T, Tatsumi M, Sakai T, Sasaki T et al. Serotonin transporter gene polymorphisms: ethnic difference and possible association with bipolar affective disorder. Mol Psychiatry 1997; 2: 457–462.

    Article  CAS  PubMed  Google Scholar 

  195. MacKenzie A, Quinn J . A serotonin transporter gene intron 2 polymorphic region, correlated with affective disorders, has allele-dependent differential enhancer-like properties in the mouse embryo. Proc Natl Acad Sci USA 1999; 96: 15251–15255.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Mundo E, Walker M, Cate T, Macciardi F, Kennedy JL . The role of serotonin transporter protein gene in antidepressant-induced mania in bipolar disorder: preliminary findings. Arch Gen Psychiatry 2001; 58: 539–544.

    Article  CAS  PubMed  Google Scholar 

  197. Takahashi H, Yoshida K, Ito K, Sato K, Kamata M, Higuchi H et al. No association between the serotonergic polymorphisms and incidence of nausea induced by fluvoxamine treatment. Eur Neuropsychopharmacol 2002; 12: 477–481.

    Article  CAS  PubMed  Google Scholar 

  198. Perlis RH, Mischoulon D, Smoller JW, Wan YJ, Lamon-Fava S, Lin KM et al. Serotonin transporter polymorphisms and adverse effects with fluoxetine treatment. Biol Psychiatry 2003; 54: 879–883.

    Article  CAS  PubMed  Google Scholar 

  199. Kaiser R, Tremblay PB, Schmider J, Henneken M, Dettling M, Muller-Oerlinghausen B et al. Serotonin transporter polymorphisms: no association with response to antipsychotic treatment, but associations with the schizoparanoid and residual subtypes of schizophrenia. Mol Psychiatry 2001; 6: 179–185.

    Article  CAS  PubMed  Google Scholar 

  200. Chong SA, Tan EC, Tan CH, Mahendren R, Tay AH, Chua HC . Tardive dyskinesia is not associated with the serotonin gene polymorphism (5-HTTLPR) in Chinese. Am J Med Genet 2000; 96: 712–715.

    Article  CAS  PubMed  Google Scholar 

  201. Hong CJ, Lin CH, Yu YW, Yang KH, Tsai SJ . Genetic variants of the serotonin system and weight change during clozapine treatment. Pharmacogenetics 2001; 11: 265–268.

    Article  CAS  PubMed  Google Scholar 

  202. Maj J, Bijak M, Dziedzicka-Wasylewska M, Rogoz R, Rogoz Z, Skuza G et al. The effects of paroxetine given repeatedly on the 5-HT receptor subpopulations in the rat brain. Psychopharmacology (Berlin) 1996; 127: 73–82.

    Article  CAS  Google Scholar 

  203. Meyer JH, Kapur S, Eisfeld B, Brown GM, Houle S, DaSilva J et al. The effect of paroxetine on 5-HT(2A) receptors in depression: an [(18)F]setoperone PET imaging study. Am J Psychiatry 2001; 158: 78–85.

    Article  CAS  PubMed  Google Scholar 

  204. Stanley M, Mann JJ . Increased serotonin-2 binding sites in frontal cortex of suicide victims. Lancet 1983; 1: 214–216.

    Article  CAS  PubMed  Google Scholar 

  205. Sternbach H . The serotonin syndrome. Am J Psychiatry 1991; 148: 705–713.

    Article  CAS  PubMed  Google Scholar 

  206. Meltzer HY . Action of atypical antipsychotics. Am J Psychiatry 2002; 159: 153–154, author reply 154–155.

    Article  PubMed  Google Scholar 

  207. Bolonna AA, Arranz MJ, Munro J, Osborne S, Petouni M, Martinez M et al. No influence of adrenergic receptor polymorphisms on schizophrenia and antipsychotic response. Neurosci Lett 2000; 280: 65–68.

    Article  CAS  PubMed  Google Scholar 

  208. Tsai SJ, Wang YC, Yu Younger WY, Lin CH, Yang KH, Hong CJ . Association analysis of polymorphism in the promoter region of the alpha2a-adrenoceptor gene with schizophrenia and clozapine response. Schizophr Res 2001; 49: 53–58.

    Article  CAS  PubMed  Google Scholar 

  209. Potkin SG, Basile VS, Jin Y, Masellis M, Badri F, Keator D et al. D1 receptor alleles predict PET metabolic correlates of clinical response to clozapine. Mol Psychiatry 2003; 8: 109–113.

    Article  CAS  PubMed  Google Scholar 

  210. Arranz MJ, Li T, Munro J, Liu X, Murray R, Collier DA et al. Lack of association between a polymorphism in the promoter region of the dopamine-2 receptor gene and clozapine response. Pharmacogenetics 1998; 8: 481–484.

    Article  CAS  PubMed  Google Scholar 

  211. Scharfetter J, Chaudhry HR, Hornik K, Fuchs K, Sieghart W, Kasper S et al. Dopamine D3 receptor gene polymorphism and response to clozapine in schizophrenic Pakistani patients. Eur Neuropsychopharmacol 1999; 10: 17–20.

    Article  CAS  PubMed  Google Scholar 

  212. Malhotra AK, Goldman D, Buchanan RW, Rooney W, Clifton A, Kosmidis MH et al. The dopamine D3 receptor (DRD3) Ser9Gly polymorphism and schizophrenia: a haplotype relative risk study and association with clozapine response. Mol Psychiatry 1998; 3: 72–75.

    Article  CAS  PubMed  Google Scholar 

  213. Shaikh S, Collier DA, Sham PC, Ball D, Aitchison K, Vallada H et al. Allelic association between a Ser-9-Gly polymorphism in the dopamine D3 receptor gene and schizophrenia. Hum Genet 1996; 97: 714–719.

    Article  CAS  PubMed  Google Scholar 

  214. Kohn Y, Ebstein RP, Heresco-Levy U, Shapira B, Nemanov L, Gritsenko I et al. Dopamine D4 receptor gene polymorphisms: relation to ethnicity, no association with schizophrenia and response to clozapine in Israeli subjects. Eur Neuropsychopharmacol 1997; 7: 39–43.

    Article  CAS  PubMed  Google Scholar 

  215. Rietschel M, Naber D, Oberlander H, Holzbach R, Fimmers R, Eggermann K et al. Efficacy and side-effects of clozapine: testing for association with allelic variation in the dopamine D4 receptor gene. Neuropsychopharmacology 1996; 15: 491–496.

    Article  CAS  PubMed  Google Scholar 

  216. Rao PA, Pickar D, Gejman PV, Ram A, Gershon ES, Gelernter J . Allelic variation in the D4 dopamine receptor (DRD4) gene does not predict response to clozapine. Arch Gen Psychiatry 1994; 51: 912–917.

    Article  CAS  PubMed  Google Scholar 

  217. Shaikh S, Collier DA, Sham P, Pilowsky L, Sharma T, Lin LK et al. Analysis of clozapine response and polymorphisms of the dopamine D4 receptor gene (DRD4) in schizophrenic patients. Am J Med Genet 1995; 60: 541–545.

    Article  CAS  PubMed  Google Scholar 

  218. Shaikh S, Collier D, Kerwin RW, Pilowsky LS, Gill M, Xu WM et al. Dopamine D4 receptor subtypes and response to clozapine. Lancet 1993; 341: 116.

    Article  CAS  PubMed  Google Scholar 

  219. Tsai SJ, Hong CJ, Yu YW, Lin CH, Song HL, Lai HC et al. Association study of a functional serotonin transporter gene polymorphism with schizophrenia, psychopathology and clozapine response. Schizophr Res 2000; 44: 177–181.

    Article  CAS  PubMed  Google Scholar 

  220. Masellis M, Basile V, Meltzer HY, Lieberman JA, Sevy S, Macciardi FM et al. Serotonin subtype 2 receptor genes and clinical response to clozapine in schizophrenia patients. Neuropsychopharmacology 1998; 19: 123–132.

    Article  CAS  PubMed  Google Scholar 

  221. Arranz MJ, Munro J, Owen MJ, Spurlock G, Sham PC, Zhao J et al. Evidence for association between polymorphisms in the promoter and coding regions of the 5-HT2A receptor gene and response to clozapine. Mol Psychiatry 1998; 3: 61–66.

    Article  CAS  PubMed  Google Scholar 

  222. Malhotra AK, Goldman D, Ozaki N, Breier A, Buchanan R, Pickar D . Lack of association between polymorphisms in the 5-HT2A receptor gene and the antipsychotic response to clozapine. Am J Psychiatry 1996; 153: 1092–1094.

    Article  CAS  PubMed  Google Scholar 

  223. Arranz MJ, Collier DA, Munro J, Sham P, Kirov G, Sodhi M et al. Analysis of a structural polymorphism in the 5-HT2A receptor and clinical response to clozapine. Neurosci Lett 1996; 217: 177–178.

    Article  CAS  PubMed  Google Scholar 

  224. Nöthen MM, Rietschel M, Erdmann J, Oberlander H, Moller HJ, Nober D et al. Genetic variation of the 5-HT2A receptor and response to clozapine. Lancet 1995; 346: 908–909.

    Article  PubMed  Google Scholar 

  225. Schumacher J, Schulze TG, Wienker TF, Rietschel M, Nöthen MM . Pharmacogenetics of the clozapine response. Lancet 2000; 356: 506–507.

    Article  CAS  PubMed  Google Scholar 

  226. Lin CH, Tsai SJ, Yu YW, Song HL, Tu PC, Sim CB et al. No evidence for association of serotonin-2A receptor variant (102T/C) with schizophrenia or clozapine response in a Chinese population. Neuroreport 1999; 10: 57–60.

    Article  CAS  PubMed  Google Scholar 

  227. Arranz M, Collier D, Sodhi M, Ball D, Roberts G, Price J et al. Association between clozapine response and allelic variation in 5-HT2A receptor gene. Lancet 1995; 346: 281–282.

    Article  CAS  PubMed  Google Scholar 

  228. Masellis M, Paterson AD, Badri F, Lieberman JA, Meltzer HY, Cavazzoni P et al. Genetic variation of 5-HT2A receptor and response to clozapine. Lancet 1995; 346: 1108.

    Article  CAS  PubMed  Google Scholar 

  229. Sodhi MS, Arranz MJ, Curtis D, Ball DM, Sham P, Roberts GW et al. Association between clozapine response and allelic variation in the 5-HT2C receptor gene. Neuroreport 1995; 7: 169–172.

    Article  CAS  PubMed  Google Scholar 

  230. Malhotra AK, Goldman D, Ozaki N, Rooney W, Clifton A, Buchanan RW et al. Clozapine response and the 5HT2C Cys23Ser polymorphism. Neuroreport 1996; 7: 2100–2102.

    Article  CAS  PubMed  Google Scholar 

  231. Rietschel M, Naber D, Fimmers R, Moller HJ, Propping P, Nöthen MM . Efficacy and side-effects of clozapine not associated with variation in the 5-HT2C receptor. Neuroreport 1997; 8: 1999–2003.

    Article  CAS  PubMed  Google Scholar 

  232. Gutierrez B, Arranz MJ, Huezo-Diaz P, Dempster D, Matthiasson P, Travis M et al. Novel mutations in 5-HT3A and 5-HT3B receptor genes not associated with clozapine response. Schizophr Res 2002; 58: 93–97.

    Article  PubMed  Google Scholar 

  233. Birkett JT, Arranz MJ, Munro J, Osbourn S, Kerwin RW, Collier DA . Association analysis of the 5-HT5A gene in depression, psychosis and antipsychotic response. Neuroreport 2000; 11: 2017–2020.

    Article  CAS  PubMed  Google Scholar 

  234. Yu YW, Tsai SJ, Lin CH, Hsu CP, Yang KH, Hong CJ . Serotonin-6 receptor variant (C267T) and clinical response to clozapine. Neuroreport 1999; 10: 1231–1233.

    Article  CAS  PubMed  Google Scholar 

  235. Masellis M, Basile VS, Meltzer HY, Lieberman JA, Sevy S, Goldman DA et al. Lack of association between the T → C 267 serotonin 5-HT6 receptor gene (HTR6) polymorphism and prediction of response to clozapine in schizophrenia. Schizophr Res 2001; 47: 49–58.

    Article  CAS  PubMed  Google Scholar 

  236. Mancama D, Arranz MJ, Munro J, Osborne S, Makoff A, Collier D et al. Investigation of promoter variants of the histamine 1 and 2 receptors in schizophrenia and clozapine response. Neurosci Lett 2002; 333: 207–211.

    Article  CAS  PubMed  Google Scholar 

  237. Hong CJ, Yu YW, Lin CH, Cheng CY, Tsai SJ . Association analysis for NMDA receptor subunit 2B (GRIN2B) genetic variants and psychopathology and clozapine response in schizophrenia. Psychiatr Genet 2001; 11: 219–222.

    Article  CAS  PubMed  Google Scholar 

  238. Hong CJ, Yu YW, Lin CH, Tsai SJ . An association study of a brain-derived neurotrophic factor Val66Met polymorphism and clozapine response of schizophrenic patients. Neurosci Lett 2003; 349: 206–208.

    Article  CAS  PubMed  Google Scholar 

  239. Hong CJ, Yu YW, Lin CH, Song HL, Lai HC, Yang KH et al. Association study of apolipoprotein E epsilon4 with clinical phenotype and clozapine response in schizophrenia. Neuropsychobiology 2000; 42: 172–174.

    Article  CAS  PubMed  Google Scholar 

  240. Nimgaonkar VL, Zhang XR, Brar JS, DeLeo M, Ganguli R . 5-HT2 receptor gene locus: association with schizophrenia or treatment response not detected. Psychiatr Genet 1996; 6: 23–27.

    Article  CAS  PubMed  Google Scholar 

  241. Jonsson E, Nöthen MM, Bunzel R, Propping P, Sedvall G . 5HT 2a receptor T102C polymorphism and schizophrenia. Lancet 1996; 347: 1831.

    CAS  PubMed  Google Scholar 

  242. Chen CH, Wei FC, Koong FJ, Hsiao KJ . Association of TaqI A polymorphism of dopamine D2 receptor gene and tardive dyskinesia in schizophrenia. Biol Psychiatry 1997; 41: 827–829.

    Article  CAS  PubMed  Google Scholar 

  243. Hori H, Ohmori O, Shinkai T, Kojima H, Nakamura J . Association between three functional polymorphisms of dopamine D2 receptor gene and tardive dyskinesia in schizophrenia. Am J Med Genet 2001; 105: 774–778.

    Article  CAS  PubMed  Google Scholar 

  244. Chong SA, Tan EC, Tan CH, Mythily, Chan YH . Polymorphisms of dopamine receptors and tardive dyskinesia among Chinese patients with schizophrenia. Am J Med Genet 2003; 116: 51–54.

    Article  Google Scholar 

  245. Kaiser R, Tremblay PB, Klufmoller F, Roots I, Brockmöller J . Relationship between adverse effects of antipsychotic treatment and dopamine D(2) receptor polymorphisms in patients with schizophrenia. Mol Psychiatry 2002; 7: 695–705.

    Article  CAS  PubMed  Google Scholar 

  246. Lovlie R, Daly AK, Blennerhassett R, Ferrier N, Steen VM . Homozygosity for the Gly-9 variant of the dopamine D3 receptor and risk for tardive dyskinesia in schizophrenic patients. Int J Neuropsychopharmacol 2000; 3: 61–65.

    Article  CAS  PubMed  Google Scholar 

  247. Basile VS, Masellis M, Badri F, Paterson AD, Meltzer HY, Lieberman JA et al. Association of the MscI polymorphism of the dopamine D3 receptor gene with tardive dyskinesia in schizophrenia. Neuropsychopharmacology 1999; 21: 17–27.

    Article  CAS  PubMed  Google Scholar 

  248. Rietschel M, Krauss H, Muller DJ, Schulze TG, Knapp M, Marwinski K et al. Dopamine D3 receptor variant and tardive dyskinesia. Eur Arch Psychiatry Clin Neurosci 2000; 250: 31–35.

    Article  CAS  PubMed  Google Scholar 

  249. Steen VM, Lovlie R, MacEwan T, McCreadie RG . Dopamine D3-receptor gene variant and susceptibility to tardive dyskinesia in schizophrenic patients. Mol Psychiatry 1997; 2: 139–145.

    Article  CAS  PubMed  Google Scholar 

  250. Garcia-Barcelo MM, Lam LC, Ungvari GS, Lam VK, Tang WK . Dopamine D3 receptor gene and tardive dyskinesia in Chinese schizophrenic patients. J Neural Transm 2001; 108: 671–677.

    Article  CAS  PubMed  Google Scholar 

  251. Liao DL, Yeh YC, Chen HM, Chen H, Hong CJ, Tsai SJ . Association between the Ser9Gly polymorphism of the dopamine D3 receptor gene and tardive dyskinesia in Chinese schizophrenic patients. Neuropsychobiology 2001; 44: 95–98.

    Article  CAS  PubMed  Google Scholar 

  252. Lerer B, Segman RH, Fangerau H, Daly AK, Basile VS, Cavallaro R et al. Pharmacogenetics of tardive dyskinesia: combined analysis of 780 patients supports association with dopamine D3 receptor gene Ser9Gly polymorphism. Neuropsychopharmacology 2002; 27: 105–119.

    Article  CAS  PubMed  Google Scholar 

  253. Segman R, Neeman T, Heresco-Levy U, Finkel B, Karagichev L, Schlafman M et al. Genotypic association between the dopamine D3 receptor and tardive dyskinesia in chronic schizophrenia. Mol Psychiatry 1999; 4: 247–253.

    Article  CAS  PubMed  Google Scholar 

  254. Woo SI, Kim JW, Rha E, Han SH, Hahn KH, Park CS et al. Association of the Ser9Gly polymorphism in the dopamine D3 receptor gene with tardive dyskinesia in Korean schizophrenics. Psychiatry Clin Neurosci 2002; 56: 469–474.

    Article  CAS  PubMed  Google Scholar 

  255. Zhang ZJ, Zhang XB, Hou G, Yao H, Reynolds GP . Interaction between polymorphisms of the dopamine D3 receptor and manganese superoxide dismutase genes in susceptibility to tardive dyskinesia. Psychiatr Genet 2003; 13: 187–192.

    Article  PubMed  Google Scholar 

  256. Segman RH, Heresco-Levy U, Yakir A, Goltser T, Strous R, Greenberg DA et al. Interactive effect of cytochrome P450 17alpha-hydroxylase and dopamine D3 receptor gene polymorphisms on abnormal involuntary movements in chronic schizophrenia. Biol Psychiatry 2002; 51: 261–263.

    Article  CAS  PubMed  Google Scholar 

  257. Basile VS, Ozdemir V, Masellis M, Meltzer HY, Lieberman JA, Potkin SG et al. Lack of association between serotonin-2A receptor gene (HTR2A) polymorphisms and tardive dyskinesia in schizophrenia. Mol Psychiatry 2001; 6: 230–234.

    Article  CAS  PubMed  Google Scholar 

  258. Tan EC, Chong SA, Mahendran R, Dong F, Tan CH . Susceptibility to neuroleptic-induced tardive dyskinesia and the T102C polymorphism in the serotonin type 2A receptor. Biol Psychiatry 2001; 50: 144–147.

    Article  CAS  PubMed  Google Scholar 

  259. Segman RH, Heresco-Levy U, Finkel B, Goltser T, Shalem R, Schlafman M et al. Association between the serotonin 2A receptor gene and tardive dyskinesia in chronic schizophrenia. Mol Psychiatry 2001; 6: 225–229.

    Article  CAS  PubMed  Google Scholar 

  260. Zhang ZJ, Zhang XB, Sha WW, Reynolds GP . Association of a polymorphism in the promoter region of the serotonin 5-HT2C receptor gene with tardive dyskinesia in patients with schizophrenia. Mol Psychiatry 2002; 7: 670–671.

    Article  CAS  PubMed  Google Scholar 

  261. Segman RH, Heresco-Levy U, Finkel B, Inbar R, Neeman T, Schlafman M et al. Association between the serotonin 2C receptor gene and tardive dyskinesia in chronic schizophrenia: additive contribution of 5-HT2Cser and DRD3gly alleles to susceptibility. Psychopharmacology (Berlin) 2000; 152: 408–413.

    Article  CAS  Google Scholar 

  262. Ohmori O, Shinkai T, Hori H, Nakamura J . Genetic association analysis of 5-HT(6) receptor gene polymorphism (267C/T) with tardive dyskinesia. Psychiatry Res 2002; 110: 97–102.

    Article  CAS  PubMed  Google Scholar 

  263. Segman RH, Shapira Y, Modai I, Hamdan A, Zislin J, Heresco-Levy U et al. Angiotensin converting enzyme gene insertion/deletion polymorphism: case-control association studies in schizophrenia, major affective disorder, and tardive dyskinesia and a family-based association study in schizophrenia. Am J Med Genet 2002; 114: 310–314.

    Article  PubMed  Google Scholar 

  264. Ohmori O, Shinkai T, Hori H, Kojima H, Nakamura J . Polymorphisms of mu and delta opioid receptor genes and tardive dyskinesia in patients with schizophrenia. Schizophr Res 2001; 52: 137–138.

    Article  CAS  PubMed  Google Scholar 

  265. Hori H, Ohmori O, Shinkai T, Kojima H, Okano C, Suzuki T et al. Manganese superoxide dismutase gene polymorphism and schizophrenia: relation to tardive dyskinesia. Neuropsychopharmacology 2000; 23: 170–177.

    Article  CAS  PubMed  Google Scholar 

  266. Zhang Z, Zhang X, Hou G, Sha W, Reynolds GP . The increased activity of plasma manganese superoxide dismutase in tardive dyskinesia is unrelated to the Ala-9Val polymorphism. J Psychiatr Res 2002; 36: 317–324.

    Article  PubMed  Google Scholar 

  267. Lai IC, Liao DL, Bai YM, Lin CC, Yu SC, Chen JY et al. Association study of the estrogen receptor polymorphisms with tardive dyskinesia in schizophrenia. Neuropsychobiology 2002; 46: 173–175.

    Article  CAS  PubMed  Google Scholar 

  268. Hong CJ, Lin CH, Yu YW, Chang SC, Wang SY, Tsai SJ . Genetic variant of the histamine-1 receptor (glu349asp) and body weight change during clozapine treatment. Psychiatr Genet 2002; 12: 169–171.

    Article  PubMed  Google Scholar 

  269. Tsai SJ, Hong CJ, Yu YW, Lin CH . −759C/T genetic variation of 5HT(2C) receptor and clozapine-induced weight gain. Lancet 2002; 360: 1790.

    Article  PubMed  Google Scholar 

  270. Reynolds GP, Zhang Z, Zhang X . Polymorphism of the promoter region of the serotonin 5-HT(2C) receptor gene and clozapine-induced weight gain. Am J Psychiatry 2003; 160: 677–679.

    Article  PubMed  Google Scholar 

  271. Reynolds GP, Zhang ZJ, Zhang XB . Association of antipsychotic drug-induced weight gain with a 5-HT2C receptor gene polymorphism. Lancet 2002; 359: 2086–2087.

    Article  CAS  PubMed  Google Scholar 

  272. Eichhammer P, Albus M, Borrmann-Hassenbach M, Schoeler A, Putzhammer A, Frick U et al. Association of dopamine D3-receptor gene variants with neuroleptic induced akathisia in schizophrenic patients: a generalization of Steen's study on DRD3 and tardive dyskinesia. Am J Med Genet 2000; 96: 187–191.

    Article  CAS  PubMed  Google Scholar 

  273. Murphy Jr GM, Kremer C, Rodrigues HE, Schatzberg AF . Pharmacogenetics of antidepressant medication intolerance. Am J Psychiatry 2003; 160: 1830–1835.

    Article  PubMed  Google Scholar 

  274. Suzuki A, Kondo T, Otani K, Mihara K, Yasui-Furukori N, Sano A et al. Association of the TaqI A polymorphism of the dopamine D(2) receptor gene with predisposition to neuroleptic malignant syndrome. Am J Psychiatry 2001; 158: 1714–1716.

    Article  CAS  PubMed  Google Scholar 

  275. Kishida I, Kawanishi C, Furuno T, Matsumura T, Hasegawa H, Sugiyama N et al. Lack of association in Japanese patients between neuroleptic malignant syndrome and the TaqI A polymorphism of the dopamine D2 receptor gene. Psychiatr Genet 2003; 13: 55–57.

    Article  PubMed  Google Scholar 

  276. Mihara K, Kondo T, Suzuki A, Yasui-Furukori N, Ono S, Sano A et al. Relationship between functional dopamine D2 and D3 receptors gene polymorphisms and neuroleptic malignant syndrome. Am J Med Genet 2003; 117B: 57–60.

    Article  PubMed  Google Scholar 

  277. Kawanishi C, Hanihara T, Shimoda Y, Suzuki K, Sugiyama N, Onishi H et al. Lack of association between neuroleptic malignant syndrome and polymorphisms in the 5-HT1A and 5-HT2A receptor genes. Am J Psychiatry 1998; 155: 1275–1277.

    Article  CAS  PubMed  Google Scholar 

  278. Rybakowski JK, Borkowska A, Czerski PM, Hauser J . Eye movement disturbances in schizophrenia and a polymorphism of catechol-O-methyltransferase gene. Psychiatry Res 2002; 113: 49–57.

    Article  CAS  PubMed  Google Scholar 

  279. Rybakowski JK, Borkowska A, Czerski PM, Hauser J . Dopamine D3 receptor (DRD3) gene polymorphism is associated with the intensity of eye movement disturbances in schizophrenic patients and healthy subjects. Mol Psychiatry 2001; 6: 718–724.

    Article  CAS  PubMed  Google Scholar 

  280. Jonsson EG, Goldman D, Spurlock G, Gustavsson JP, Nielsen DA, Linnoila M et al. Tryptophan hydroxylase and catechol-O-methyltransferase gene polymorphisms: relationships to monoamine metabolite concentrations in CSF of healthy volunteers. Eur Arch Psychiatry Clin Neurosci 1997; 247: 297–302.

    Article  CAS  PubMed  Google Scholar 

  281. Walther DJ, Peter JU, Bashammakh S, Hortnagl H, Voits M, Fink H et al. Synthesis of serotonin by a second tryptophan hydroxylase isoform. Science 2003; 299: 76.

    Article  CAS  PubMed  Google Scholar 

  282. Yu AM, Idle JR, Byrd LG, Krausz KW, Kupfer A, Gonzalez FJ . Regeneration of serotonin from 5-methoxytryptamine by polymorphic human CYP2D6. Pharmacogenetics 2003; 13: 173–181.

    Article  CAS  PubMed  Google Scholar 

  283. Scharfetter J . Dopamine receptor polymorphisms and drug response in schizophrenia. Pharmacogenomics 2001; 2: 251–261.

    Article  CAS  PubMed  Google Scholar 

  284. Wong AH, Buckle CE, Van Tol HH . Polymorphisms in dopamine receptors: what do they tell us? Eur J Pharmacol 2000; 410: 183–203.

    Article  CAS  PubMed  Google Scholar 

  285. Nothen MM, Cichon S, Hemmer S, Hebebrand J, Remschmidt H, Lehmkuhl G et al. Human dopamine D4 receptor gene: frequent occurrence of a null allele and observation of homozygosity. Hum Mol Genet 1994; 3: 2207–2212.

    Article  CAS  PubMed  Google Scholar 

  286. Noble EP, Gottschalk LA, Fallon JH, Ritchie TL, Wu JC . D2 dopamine receptor polymorphism and brain regional glucose metabolism. Am J Med Genet 1997; 74: 162–166.

    Article  CAS  PubMed  Google Scholar 

  287. Pohjalainen T, Rinne JO, Nagren K, Lehikoinen P, Anttila K, Syvalahti EK et al. The A1 allele of the human D2 dopamine receptor gene predicts low D2 receptor availability in healthy volunteers. Mol Psychiatry 1998; 3: 256–260.

    Article  CAS  PubMed  Google Scholar 

  288. Cravchik A, Sibley DR, Gejman PV . Analysis of neuroleptic binding affinities and potencies for the different human D2 dopamine receptor missense variants. Pharmacogenetics 1999; 9: 17–23.

    Article  CAS  PubMed  Google Scholar 

  289. Ohara K, Nagai M, Tani K, Nakamura Y, Ino A . Functional polymorphism of −141C Ins/Del in the dopamine D2 receptor gene promoter and schizophrenia. Psychiatry Res 1998; 81: 117–123.

    Article  CAS  PubMed  Google Scholar 

  290. Ebstein RP, Macciardi F, Heresco-Levi U, Serretti A, Blaine D, Verga M et al. Evidence for an association between the dopamine D3 receptor gene DRD3 and schizophrenia. Hum Hered 1997; 47: 6–16.

    Article  CAS  PubMed  Google Scholar 

  291. Cohen BM, Ennulat DJ, Centorrino F, Matthysse S, Konieczna H, Chu HM et al. Polymorphisms of the dopamine D4 receptor and response to antipsychotic drugs. Psychopharmacology (Berlin) 1999; 141: 6–10.

    Article  CAS  Google Scholar 

  292. Jonsson E, Lannfelt L, Sokoloff P, Schwartz JC, Sedvall G . Lack of association between schizophrenia and alleles in the dopamine D3 receptor gene. Acta Psychiatr Scand 1993; 87: 345–349.

    Article  CAS  PubMed  Google Scholar 

  293. Kaiser R, Konneker M, Henneken M, Dettling M, Muller-Oerlinghausen B, Roots I et al. Dopamine D4 receptor 48-bp repeat polymorphism: no association with response to antipsychotic treatment, but association with catatonic schizophrenia. Mol Psychiatry 2000; 5: 418–424.

    Article  CAS  PubMed  Google Scholar 

  294. Leszczynska-Rodziewicz A, Czerski PM, Kapelski P, Godlewski S, Dmitrzak-Weglarz M, Rybakowski J et al. A polymorphism of the norepinephrine transporter gene in bipolar disorder and schizophrenia: lack of association. Neuropsychobiology 2002; 45: 182–185.

    Article  CAS  PubMed  Google Scholar 

  295. Naber CK, Husing J, Wolfhard U, Erbel R, Siffert W . Interaction of the ACE D allele and the GNB3 825T allele in myocardial infarction. Hypertension 2000; 36: 986–989.

    Article  CAS  PubMed  Google Scholar 

  296. Bondy B, Baghai TC, Zill P, Bottlender R, Jaeger M, Minov C et al. Combined action of the ACE D- and the G-protein beta3 T-allele in major depression: a possible link to cardiovascular disease? Mol Psychiatry 2002; 7: 1120–1126.

    Article  CAS  PubMed  Google Scholar 

  297. Manji HK, Quiroz JA, Sporn J, Payne JL, Denicoff K, Gray N et al. Enhancing neuronal plasticity and cellular resilience to develop novel, improved therapeutics for difficult-to-treat depression. Biol Psychiatry 2003; 53: 707–742.

    Article  CAS  PubMed  Google Scholar 

  298. Joober R, Benkelfat C, Lal S, Bloom D, Labelle A, Lalonde P et al. Association between the methylenetetrahydrofolate reductase 677C → T missense mutation and schizophrenia. Mol Psychiatry 2000; 5: 323–326.

    Article  CAS  PubMed  Google Scholar 

  299. Kunugi H, Fukuda R, Hattori M, Kato T, Tatsumi M, Sakai T et al. C677T polymorphism in methylenetetrahydrofolate reductase gene and psychoses. Mol Psychiatry 1998; 3: 435–437.

    Article  CAS  PubMed  Google Scholar 

  300. Lachman HM, Papolos DF, Saito T, Yu YM, Szumlanski CL, Weinshilboum RM . Human catechol-O-methyltransferase pharmacogenetics: description of a functional polymorphism and its potential application to neuropsychiatric disorders. Pharmacogenetics 1996; 6: 243–250.

    Article  CAS  PubMed  Google Scholar 

  301. Sabol SZ, Hu S, Hamer D . A functional polymorphism in the monoamine oxidase A gene promoter. Hum Genet 1998; 103: 273–279.

    Article  CAS  PubMed  Google Scholar 

  302. Illi A, Mattila KM, Kampman O, Anttila S, Roivas M, Lehtimaki T et al. Catechol-O-methyltransferase and monoamine oxidase A genotypes and drug response to conventional neuroleptics in schizophrenia. J Clin Psychopharmacol 2003; 23: 429–434.

    Article  CAS  PubMed  Google Scholar 

  303. Hawi Z, Straub RE, O’Neill A, Kendler KS, Walsh D, Gill M . No linkage or linkage disequilibrium between brain-derived neurotrophic factor (BDNF) dinucleotide repeat polymorphism and schizophrenia in Irish families. Psychiatry Res 1998; 81: 111–116.

    Article  CAS  PubMed  Google Scholar 

  304. Krebs MO, Guillin O, Bourdell MC, Schwartz JC, Olie JP, Poirier MF et al. Brain derived neurotrophic factor (BDNF) gene variants association with age at onset and therapeutic response in schizophrenia. Mol Psychiatry 2000; 5: 558–562.

    Article  CAS  PubMed  Google Scholar 

  305. Egan MF, Kojima M, Callicott JH, Goldberg TE, Kolachana BS, Bertolino A et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell 2003; 112: 257–269.

    Article  CAS  PubMed  Google Scholar 

  306. Corrigan FM, MacDonald S, Reynolds GP . Clozapine-induced hypersalivation and the alpha 2 adrenoceptor. Br J Psychiatry 1995; 167: 412.

    Article  CAS  PubMed  Google Scholar 

  307. Witchel HJ, Hancox JC, Nutt DJ . Psychotropic drugs, cardiac arrhythmia, and sudden death. J Clin Psychopharmacol 2003; 23: 58–77.

    Article  CAS  PubMed  Google Scholar 

  308. Yang P, Kanki H, Drolet B, Yang T, Wei J, Viswanathan PC et al. Allelic variants in long-QT disease genes in patients with drug-associated torsades de pointes. Circulation 2002; 105: 1943–1948.

    Article  CAS  PubMed  Google Scholar 

  309. Harrison PJ, Owen MJ . Genes for schizophrenia? Recent findings and their pathophysiological implications. Lancet 2003; 361: 417–419.

    Article  CAS  PubMed  Google Scholar 

  310. Arranz MJ, Munro J, Birkett J, Bolonna A, Mancama D, Sodhi M et al. Pharmacogenetic prediction of clozapine response. Lancet 2000; 355: 1615–1616.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The support for this work has been provided by grants from the German Ministry of Education and Research, BMBF Grant No. 01 GG 9845/5 and from the National Institutes of Health: GM61394, K30HL04526, RR16996, HG002500, RR017611, DK063240, DK58851 (JL), RR017365, MH062777, RR000865 (M-LW), and by awards from the Dana Foundation, Amgen, Inc. (JL), and NARSAD (M-LW).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J Kirchheiner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirchheiner, J., Nickchen, K., Bauer, M. et al. Pharmacogenetics of antidepressants and antipsychotics: the contribution of allelic variations to the phenotype of drug response. Mol Psychiatry 9, 442–473 (2004). https://doi.org/10.1038/sj.mp.4001494

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4001494

Keywords

This article is cited by

Search

Quick links