Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling

Abstract

Maternal infections during pregnancy increase the risk for schizophrenia and related disorders of putative neurodevelopmental origin in the offspring. This association has been attributed to enhanced expression of pro-inflammatory cytokines in the fetal environment in response to maternal immunological stimulation. In contrast, the specific roles of anti-inflammatory cytokines are virtually unknown in this context. Here, we demonstrate that genetically enforced expression of the anti-inflammatory cytokine interleukin (IL)-10 by macrophages attenuates the long-term behavioral and pharmacological consequences of prenatal immune activation in a mouse model of prenatal viral-like infection by polyriboinosinic–polyribocytidilic acid (PolyI:C; 2 mg/kg, intravenously). In the absence of a discrete prenatal inflammatory stimulus, however, enhanced levels of IL-10 at the maternal–fetal interface by itself also precipitates specific behavioral abnormalities in the grown offspring. This highlights that in addition to the disruptive effects of excess pro-inflammatory molecules, a shift toward enhanced anti-inflammatory signaling in prenatal life can similarly affect cognitive and behavioral development. Hence, shifts of the balance between pro- and anti-inflammatory cytokine classes may be a critical determinant of the final impact on neurodevelopment following early life infection or innate immune imbalances.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Weinberger DR . Implications of normal brain development for the pathogenesis of schizophrenia. Arch Gen Psychiatry 1987; 44: 660–669.

    Article  CAS  Google Scholar 

  2. Rapoport JL, Addington AM, Frangou S, Psych MR . The neurodevelopmental model of schizophrenia: update 2005. Mol Psychiatry 2005; 10: 434–449.

    Article  CAS  Google Scholar 

  3. DiCicco-Bloom E, Lord C, Zwaigenbaum L, Courchesne E, Dager SR, Schmitz C et al. The developmental neurobiology of autism spectrum disorder. J Neurosci 2006; 26: 6897–6906.

    Article  CAS  Google Scholar 

  4. Brown AS, Susser ES . In utero infection and adult schizophrenia. Ment Retard Dev Disabil Res Rev 2002; 8: 51–57.

    Article  Google Scholar 

  5. Fatemi SH (ed). Neuropsychiatric Disorders and Infection. Martin Dunitz-Taylor & Francis Group: London, 2005.

    Book  Google Scholar 

  6. Arndt TL, Stodgell CJ, Rodier PM . The teratology of autism. Int J Dev Neurosci 2005; 23: 189–199.

    Article  CAS  Google Scholar 

  7. Libbey JE, Sweeten TL, McMahon WM, Fujinami RS . Autistic disorder and viral infections. J Neurovirol 2005; 11: 1–10.

    Article  Google Scholar 

  8. Gilmore JH, Jarskog LF . Exposure to infection and brain development: cytokines in the pathogenesis of schizophrenia. Schizophr Res 1997; 24: 365–367.

    Article  CAS  Google Scholar 

  9. Curfs JH, Meis JF, Hoogkamp-Korstanje JA . A primer on cytokines: sources, receptors, effects, and inducers. Clin Microbiol Rev 1997; 10: 742–780.

    Article  CAS  Google Scholar 

  10. Ling ZD, Potter ED, Lipton JW, Carvey PM . Differentiation of mesencephalic progenitor cells into dopaminergic neurons by cytokines. Exp Neurol 1998; 149: 411–423.

    Article  CAS  Google Scholar 

  11. Jarskog LF, Xiao H, Wilkie MB, Lauder JM, Gilmore JH . Cytokine regulation of embryonic rat dopamine and serotonin neuronal survival in vitro. Int J Dev Neurosci 1997; 15: 711–776.

    Article  CAS  Google Scholar 

  12. Gilmore JH, Jarskog LF, Vadlamudi S, Lauder JM . Prenatal infection and risk for schizophrenia: IL-1beta, IL-6, and TNFalpha inhibit cortical neuron dendrite development. Neuropsychopharmacology 2004; 29: 1221–1229.

    Article  CAS  Google Scholar 

  13. Borrell J, Vela JM, Arevalo-Martin A, Molina-Holgado E, Guaza C . Prenatal immune challenge disrupts sensorimotor gating in adult rats. Implications for the etiopathogenesis of schizophrenia. Neuropsychopharmacology 2002; 26: 204–215.

    Article  CAS  Google Scholar 

  14. Shi L, Fatemi SH, Sidwell RW, Patterson PH . Maternal influenza infection causes marked behavioral and pharmacological changes in the offspring. J Neurosci 2003; 23: 297–302.

    Article  Google Scholar 

  15. Zuckerman L, Rehavi M, Nachman R, Weiner I . Immune activation during pregnancy in rats leads to a postpubertal emergence of disrupted latent inhibition, dopaminergic hyperfunction, and altered limbic morphology in the offspring: a novel neurodevelopmental model of schizophrenia. Neuropsychopharmacology 2003; 28: 1778–1789.

    Article  CAS  Google Scholar 

  16. Meyer U, Feldon J, Schedlowski M, Yee BK . Towards an immuno-precipitated neurodevelopmental animal model of schizophrenia. Neurosci Biobehav Rev 2005; 29: 913–947.

    Article  CAS  Google Scholar 

  17. Meyer U, Nyffeler M, Engler A, Urwyler A, Schedlowski M, Knuesel I et al. The time of prenatal immune challenge determines the specificity of inflammation-mediated brain and behavioral pathology. J Neurosci 2006; 26: 4752–4762.

    Article  CAS  Google Scholar 

  18. Meyer U, Schwendener S, Feldon J, Yee BK . Prenatal and postnatal maternal contributions in the infection model of schizophrenia. Exp Brain Res 2006; 173: 243–257.

    Article  Google Scholar 

  19. Ozawa K, Hashimoto K, Kishimoto T, Shimizu E, Ishikura H, Iyo M . Immune activation during pregnancy in mice leads to dopaminergic hyperfunction and cognitive impairment in the offspring: a neurodevelopmental animal model of schizophrenia. Biol Psychiatry 2006; 59: 546–554.

    Article  CAS  Google Scholar 

  20. Romero E, Ali C, Molina-Holgado E, Castellano B, Guaza C, Borrell J . Neurobehavioral and immunological consequences of prenatal immune activation in rats. Influence of antipsychotics. Neuropsychopharmacology 2006 (in press; E-pub ahead of print).

  21. Moore KW, de Waal Malefyt R, Coffman RL, O'Garra A . Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19: 683–765.

    Article  CAS  Google Scholar 

  22. Murray PJ . Understanding and exploiting the endogenous interleukin-10/STAT3-mediated anti-inflammatory response. Curr Opin Pharmacol 2006; 6: 379–386.

    Article  CAS  Google Scholar 

  23. Lang R, Rutschman RL, Greaves DR, Murray PJ . Autocrine deactivation of macrophages in transgenic mice constitutively overexpressing IL-10 under control of the human CD68 promoter. J Immunol 2002; 168: 3402–3411.

    Article  CAS  Google Scholar 

  24. Shi L, Tu N, Patterson PH . Maternal influenza infection is likely to alter fetal brain development indirectly: the virus is not detected in the fetus. Int J Dev Neurosci 2005; 23: 299–305.

    Article  Google Scholar 

  25. Ashdown H, Dumont Y, Ng M, Poole S, Boksa P, Luheshi GN . The role of cytokines in mediating effects of prenatal infection on the fetus: implications for schizophrenia. Mol Psychiatry 2006; 11: 47–55.

    Article  CAS  Google Scholar 

  26. Alexopoulou L, Holt AC, Medzhitov R, Flavell RA . Recognition of double-stranded RNA and activation of NF-kB by Toll-like receptor 3. Nature 2001; 413: 732–738.

    Article  CAS  Google Scholar 

  27. Fortier ME, Kent S, Ashdown H, Poole S, Boksa P, Luheshi GN . The viral mimic, polyinosinic:polycytidylic acid, induces fever in rats via an interleukin-1-dependent mechanism. Am J Physiol Regul Integr Comp Physiol 2004; 287: R759–R766.

    Article  CAS  Google Scholar 

  28. Belzung C, Griebel G . Measuring normal and pathological anxiety-like behaviour in mice: a review. Behav Brain Res 2001; 125: 141–149.

    Article  CAS  Google Scholar 

  29. Braff DL, Geyer MA, Swerdlow NR . Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology 2001; 156: 234–258.

    Article  CAS  Google Scholar 

  30. Perry W, Minassian A, Lopez B, Maron L, Lincoln A . Sensorimotor gating deficits in adults with autism. Biol Psychiatry 2006; 61: 482–486.

    Article  Google Scholar 

  31. Swerdlow NR, Braff DL, Geyer MA . Animal models of deficient sensorimotor gating: what we know, what we think we know, and what we hope to know soon. Behav Pharmacol 2000; 11: 185–204.

    Article  CAS  Google Scholar 

  32. Yee BK, Chang T, Pietropaolo S, Feldon J . The expression of prepulse inhibition of the acoustic startle reflex as a function of three pulse stimulus intensities, three prepulse stimulus intensities, and three levels of startle responsiveness in C57BL6/J mice. Behav Brain Res 2005; 163: 265–276.

    Article  Google Scholar 

  33. Baruch I, Hemsley DR, Gray JA . Differential performance of acute and chronic schizophrenics in a latent inhibition task. J Nerv Ment Dis 1988; 176: 598–606.

    Article  CAS  Google Scholar 

  34. Weiner I . The ‘two-headed’ latent inhibition model of schizophrenia: modeling positive and negative symptoms and their treatment. Psychopharmacology 2003; 169: 257–297.

    Article  CAS  Google Scholar 

  35. Ballabh P, Braun A, Nedergaard M . The blood–brain barrier: an overview: structure, regulation, and clinical implications. Neurobiol Dis 2004; 16: 1–13.

    Article  CAS  Google Scholar 

  36. Kastin AJ, Akerstrom V, Pan W . Interleukin-10 as a CNS therapeutic: the obstacle of the blood–brain/blood–spinal cord barrier. Mol Brain Res 2003; 114: 168–171.

    Article  CAS  Google Scholar 

  37. Fiorentino DF, Zlotnik A, Mosmann TR, Howard M, O'Garra A . IL-10 inhibits cytokine production by activated macrophages. J Immunol 1991; 146: 3444–3451.

    CAS  PubMed  Google Scholar 

  38. Lang R, Patel D, Morris JJ, Rutschman RL, Murray PJ . Shaping gene expression in activated and resting primary macrophages by IL-10. J Immunol 2002; 169: 2253–2263.

    Article  CAS  Google Scholar 

  39. Jeohn GH, Kong LY, Wilson B, Hudson P, Hong JS . Synergistic neurotoxic effects of combined treatments with cytokines in murine primary mixed neuron/glia cultures. J Neuroimmunol 1998; 85: 1–10.

    Article  CAS  Google Scholar 

  40. Buka SL, Tsuang MT, Torrey EF, Klebanoff MA, Wagner RL, Yolken RH . Maternal cytokine levels during pregnancy and adult psychosis. Brain Behav Immun 2001; 15: 411–420.

    Article  CAS  Google Scholar 

  41. Nawa H, Takei N . Recent progress in animal modeling of immune inflammatory processes in schizophrenia: implication of specific cytokines. Neurosci Res 2006; 56: 2–13.

    Article  CAS  Google Scholar 

  42. Lipska BK, Weinberger DA . To model a psychiatric disorder in animals: schizophrenia as a reality test. Neuropsychopharmacology 2000; 23: 223–239.

    Article  CAS  Google Scholar 

  43. Cadenhead KS, Geyer MA, Braff DL . Impaired startle prepulse inhibition and habituation in patients with schizotypal personality disorder. Am J Psychiatry 1993; 150: 1862–1867.

    Article  CAS  Google Scholar 

  44. Swerdlow NR, Benbow CH, Zisook S, Geyer MA, Braff DL . A preliminary assessment of sensorimotor gating in patients with obsessive compulsive disorder. Biol Psychiatry 1993; 33: 298–301.

    Article  CAS  Google Scholar 

  45. Lieberman JA, Kane JM, Alvir J . Provocative tests with psychostimulant drugs in schizophrenia. Psychopharmacology 1987; 91: 415–433.

    Article  CAS  Google Scholar 

  46. Laruelle M, Abi-Dargham A, van Dyck CH, Gil R, D'Souza CD, Erdos J et al. Single photon emission computerized tomography imaging of amphetamine-induced dopamine release in drug-free schizophrenic subjects. Proc Natl Acad Sci USA 1996; 93: 9235–9240.

    Article  CAS  Google Scholar 

  47. Laruelle M, Abi-Dargham A, Gil R, Kegeles L, Innis R . Increased dopamine transmission in schizophrenia: relationship to illness phases. Biol Psychiatry 1999; 46: 56–72.

    Article  CAS  Google Scholar 

  48. Lahti AC, Weiler MA, Tamara Michaelidis BA, Parwani A, Tamminga CA . Effects of ketamine in normal and schizophrenic volunteers. Neuropsychopharmacology 2001; 25: 455–467.

    Article  CAS  Google Scholar 

  49. Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD et al. Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 1994; 51: 199–214.

    Article  CAS  Google Scholar 

  50. Morgan CJ, Mofeez A, Brandner B, Bromley L, Curran HV . Acute effects of ketamine on memory systems and psychotic symptoms in healthy volunteers. Neuropsychopharmacology 2004; 29: 208–218.

    Article  CAS  Google Scholar 

  51. Malhotra AK, Pinals DA, Weingartner H, Sirocco K, Missar CD, Pickar D et al. NMDA receptor function and human cognition: the effects of ketamine in healthy volunteers. Neuropsychopharmacology 1996; 14: 301–307.

    Article  CAS  Google Scholar 

  52. Chiavetto LB, Boin F, Zanardini R, Popoli M, Michelato A, Bignotti S et al. Association between promoter polymorphic haplotypes of interleukin-10 gene and schizophrenia. Biol Psychiatry 2002; 51: 480–484.

    Article  CAS  Google Scholar 

  53. Yu L, Yang MS, Zhao J, Shi YY, Zhao XZ, Yang JD et al. An association between polymorphisms of the interleukin-10 gene promoter and schizophrenia in the Chinese population. Schizophr Res 2004; 71: 179–183.

    Article  Google Scholar 

  54. Mousa A, Seiger A, Kjaeldgaard A, Bakhiet M . Human first trimester forebrain cells express genes for inflammatory and anti-inflammatory cytokines. Cytokine 1999; 11: 55–60.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present study was supported by grants awarded by the Swiss Federal Institute of Technology (ETH). Joram Feldon and Benjamin K Yee received additional support from the National Centre for Competence in Research: Neural Plasticity & Repair, funded by the Swiss National Science Foundation. We are extremely grateful to Dr Irene Knuesel and Ms Liz Weber for breeding and genotyping the animals, to Peter Schmid for his excellent technical support, to Natalie Aeschbach-Jones for her editorial support, and to the Animal Services Department in Schwerzenbach for animal husbandry and care.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to U Meyer or J Feldon.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Meyer, U., Murray, P., Urwyler, A. et al. Adult behavioral and pharmacological dysfunctions following disruption of the fetal brain balance between pro-inflammatory and IL-10-mediated anti-inflammatory signaling. Mol Psychiatry 13, 208–221 (2008). https://doi.org/10.1038/sj.mp.4002042

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.mp.4002042

Keywords

This article is cited by

Search

Quick links