Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro

Abstract

The tumor suppressor p53 is a multifunctional protein that plays a critical role in modulating cellular responses upon DNA damage or other stresses. These functions of p53 are regulated both by protein-protein interactions and phosphorylation. The double-stranded RNA activated protein kinase PKR is a serine/threonine kinase that modulates protein synthesis through the phosphorylation of translation initiation factor eIF-2α. PKR is an interferon (IFN)-inducible protein that is thought to mediate the anti-viral and anti-proliferative effects of IFN via its capacity to inhibit protein synthesis. Here we report that PKR physically associates with p53. The interaction of PKR with p53 is enhanced by IFNs and upon conditions that p53 acquires a wild type conformation. PKR/p53 complex formation in vitro requires the N-terminal regulatory domain of PKR and the last 30 amino acids of the C-terminus of human p53. In addition, p53 may function as a substrate of PKR since phosphorylation of human p53 on serine392 is induced by activated PKR in vitro. These novel findings raise the possibility of a functional interaction between PKR and p53 in vivo, which may account, at least in part, for the ability of each protein to regulate gene expression at both the transcriptional and the translational levels.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Avantaggiati ML, Ogryzko V, Gardner K, Giordano A, Levine AS and Kelly K. . 1997 Cell 89: 1175–1184.

  • Balkalkin G, Selivanova G, Yakovleva T, Kiseleva E, Kashuba KP, Magnusson L, Szekely L, Klein G, Terenius L and Wiman KG. . 1995 Nucleic Acids Res. 23: 362–369.

  • Balkalkin G, Yakovleva T, Selivanova G, Magnusson KP, Szekely L, Kiseleva E, Klein G, Terenius L and Wiman KG. . 1994 Proc. Natl. Acad. Sci. USA 91: 413–417.

  • Barber GN, Wambach M, Thompson S, Jagus R and Katze MG. . 1995 Mol. Cell. Biol. 15: 3138–3146.

  • Bayle JH, Elenbaas B and Levine AJ. . 1995 Proc. Natl. Acad. Sci. USA 92: 5729–5733.

  • Boyle WJ, van der Geer P and Hunter T. . 1991 Methods Enzymol. 201: 110–149.

  • Brain R and Jenkins JR. . 1994 Oncogene 9: 1775–1780.

  • Caelles C, Helmberg A and Karin M. . 1994 Nature 370: 220–223.

  • Chen J, Marechal V and Levine AJ. . 1993 Mol. Cell. Biol. 13: 4107–4114.

  • Chong KL, Feng L, Schappert K, Meurs E, Donahue TF, Friesen JD, Hovanessian AG and Williams BRG. . 1992 EMBO J. 11: 1553–1562.

  • Choubey D and Lengyel F. . 1995 J. Biol. Chem. 270: 6134–6140.

  • Choubey D, Li SJ, Datta B, Gutterman JU and Lengyel P. . 1996 EMBO J. 15: 5668–5678.

  • Clemens MJ and Elia A. . 1997 J. Inteferon Cytokine Res. 17: 503–524.

  • Datta B, Li B, Choubey D, Nallur G and Lengyel P. . 1996 J. Biol. Chem. 271: 27544–27555.

  • Debbas M and White E. . 1993 Genes Dev. 7: 546–554.

  • Der SD, Yang YL, Weissmann C and Williams BR. . 1997 Proc. Natl. Acad. Sci. USA 94: 3279–3283.

  • El-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B. . 1993 Cell 75: 817–825.

  • Ewen ME and Miller SJ. . 1996 Biochim. Biophys. Acta 1242: 181–184.

  • Ewen ME, Oliver CJ, Sluss HK, Miller SJ, Peeper DS. . 1995 Genes Dev. 9: 204–217.

  • Fontoura BM, Atienza CA, Sorokina EA, Morimoto T and Carroll RB. . 1997 Mol. Cell. Biol. 17: 3146–3154.

  • Fontoura BM, Sorokina EA, David E and Carroll RB. . 1992 Mol. Cell. Biol. 12: 5145–5151.

  • Frangioni JV and Neel BG. . 1993 Anal. Biochem. 210: 179–187.

  • Fu L and Benchimol S. . 1997 EMBO J. 16: 4117–4125.

  • Fu L, Minden MD and Benchimol S. . 1996 EMBO J. 15: 4392–4401.

  • Galabru J and Hovanessian A. . 1987 J. Biol. Chem. 262: 15538–15544.

  • Geballe AP. . (1996) In: Translational Control, Hershey JW, Mathews MB and Soneberg N (eds).. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press pp. 173–198.

    Google Scholar 

  • Green SR, Manche L and Mathews MB. . 1995 Mol. Cell. Biol. 15: 358–364.

  • Gu W, Shi XL and Roeder RG. . 1997 Nature 387: 819–823.

  • Halazonetis TD, Davis LJ and Kandil AN. . 1993 EMBO J. 12: 1021–1028.

  • Harper JW, Adami GR, Wei N, Keyomarsi K and Elledge SJ. . 1993 Cell 75: 805–816.

  • Hershey JWB. . 1989 J. Biol. Chem. 264: 20823–20826.

  • Hoppe-Seyler F and Butz K. . 1993 J. Virol. 67: 3111–3117.

  • Horikoshi N, Usheva A, Chen J, Levine AJ, Weinmann R and Shenk T. . 1995 Mol. Cell. Biol. 15: 227–234.

  • Howe JG and Hershey JWB. . 1984 Cell 37: 85–93.

  • Hupp TR, Meek DW, Midgley CA and Lane DP. . 1992 Cell 71: 875–886.

  • Ishioka C, Englert C, Winge P, Yan YX, Engelstein M and Friend SH. . 1995 Oncogene 10: 1485–1492.

  • Katze MG. . 1995 Trends Microbiol. 3: 75–78.

  • Katze MG, Wambach M, Wong ML, Garfinkel M, Meurs E, Chong K, Williams BR, Hovanessian AG and Barber GN. . 1991 Mol. Cell. Biol. 11: 5497–5505.

  • Ko LJ and Prives C. . 1996 Genes Dev. 10: 1054–1072.

  • Koromilas AE, Roy S, Barber GN, Katze MG and Sonenberg N. . 1992 Science 257: 1685–1689.

  • Kumar A, Haque J, Lacoste J, Hiscott J and Williams BRG. . 1994 Proc. Natl. Acad. Sci. USA 91: 6288–6292.

  • Lee S, Elenbaas B, Levine A and Griffith J. . 1995 Cell 81: 1013–1020.

  • Lee SB and Esteban M. . 1994 Virology 199: 491–496.

  • Lee SB, Rodriguez D, Rodriguez JR and Esteban M. . 1997 Virology 231: 81–88.

  • Levine AJ. . 1997 Cell 88: 323–331.

  • Lill NL, Grossman SR, Ginsberg D, DeCaprio J and Livingston DM. . 1997 Nature 387: 823–827.

  • Lu H, Taya Y, Ikeda M and Levine A. . 1988 Proc. Natl. Acad. Sci. USA 95: 6399–6402.

  • Meurs EF, Galabru J, Barber GN, Katze MG and Hovanessian AG. . 1993 Proc. Natl. Acad. Sci. USA 90: 232–236.

  • Milne DM, McKendrick L, Jardine LJ, Deacon E, Lord JM and Meek DW. . 1996 Oncogene 13: 205–211.

  • Min W, Ghosh S and Lengyel P. . 1996 Mol. Cell. Biol. 16: 359–368.

  • Miyashita T and Reed JC. . 1995 Cell 80: 293–299.

  • Mizushima S and Nagata S. . 1990 Nucleic Acids Res. 18: 5322.

  • Mosner J, Mummenbrauer T, Bauer C, Sczakiel G, Grosse F and Deppert W. . 1995 EMBO J. 14: 4442–4449.

  • Oberosler P, Hloch P, Ramsperger U and Stahl H. . 1993 EMBO J. 12: 2389–2396.

  • Pfeifer GP and Holmquist GP. . 1997 Biochim. Biophys. Acta 1333: M1–M8.

  • Reed M, Woelker B, Wang P, Wang Y, Anderson ME and Tegtmeyer P. . 1995 Proc. Natl. Acad. Sci. USA 92: 9455–9459.

  • Rende-Fournier R, Ortega LG, George CX and Samuel CE. . 1997 Virology 238: 410–423.

  • Sambrook J, Fritsch EF and Maniatis T. . 1989 Molecular Cloning: A Laboratory Manual. Cold Spring Harbour, NY: Cold Spring Harbour Laboratory Press.

    Google Scholar 

  • Steegenga WT, van der Eb AJ and Jochemsen AG. . 1996 J. Mol. Biol. 263: 103–113.

  • Takenaka I, Morin F, Seizinger BR and Kley N. . 1995 J. Biol. Chem. 270: 5405–5411.

  • Takizawa T, Ohashi K and Nakanishi Y. . 1996 J. Virol. 70: 8128–8132.

  • Wang Y, Reed M, Wang P, Stenger JE, Mayr G, Anderson ME, Schwedes JF and Tegtmeyer P. . 1993 Genes Dev. 7: 2575–2586.

  • White E. . 1996 Genes Dev. 10: 1–15.

  • Wong AH, Tam NWN, Yang YL, Cuddihy AR, Li S, Kirchoff S, Hauser H, Decker T and Koromilas AE. . 1997 EMBO J. 16: 1291–1304.

  • Wu L, Bayle JH, Elenbaas B, Pavletich NP and Levine AJ. . 1995 Mol. Cell. Biol. 15: 497–504.

  • Yang YL, Reis LF, Pavlovic J, Aguzzi A, Schafer R, Kumar A, Williams BR, Aguet M and Weissmann C. . 1995 EMBO J. 14: 6095–6106.

  • Yeung MC, Liu J and Lau AS. . 1996 Proc. Natl. Acad. Sci. USA 93: 12451–12455.

  • Zhu S, Sobolev AY and Wek RC. . 1996 J. Biol. Chem. 271: 24989–24994.

Download references

Acknowledgements

We thank Y-L Yang and C Weissmann for PKR+/+ and PKR−/− MEFs; GN Barber and A Darveau for anti-human PKR (13B8-F9) monoclonal antibody; J Bell for anti-mouse PKR (TIK) antibodies; A Levine for human wild type p53 cDNA; T Shenk for the GST-p53 fusion proteins; E White for BRK cells expressing the ts mutant p53 (val135) and E1A and E1B genes; C Proud for purified eIF-2α; MG Katze for PKRK296R cDNA; Y Taya for anti-phosphoserine389 p53 specific antibody and R Wek for the histidine-tagged eIF-2α constructs. Supported by research grants from the National Cancer Institute of Canada, Medical Research Council of Canada and The Cancer Research Society Inc to AEK. ARC is the recipient of a studentship from The Cancer Research Society Inc., AH-TW is supported by a Terry Fox Research Studentship from the National Cancer Institute of Canada and NWNT by a Doctoral Research Award from the Medical Research Council of Canada. AEK is a member of the Terry Fox Group in Molecular Oncology and a recipient of an MRC Scientist Award.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cuddihy, A., Hoi-Tao Wong, A., Wai Ning Tam, N. et al. The double-stranded RNA activated protein kinase PKR physically associates with the tumor suppressor p53 protein and phosphorylates human p53 on serine 392 in vitro. Oncogene 18, 2690–2702 (1999). https://doi.org/10.1038/sj.onc.1202620

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1202620

Keywords

This article is cited by

Search

Quick links