Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Aberrant expression and activation of insulin-like growth factor-1 receptor (IGF-1R) are mediated by an induction of IGF-1R promoter activity and stabilization of IGF-1R mRNA and contributes to growth factor independence and increased survival of the pancreatic cancer cell line MIA PaCa-2

Abstract

In the present study we investigated the mechanisms responsible for and the biological consequences of the constitutive activation of the insulin-like growth factor-1 receptor (IGF-1R) in the MIA PaCa-2 cells. An aberrant increase in the expression and activation of the IGF-1R was observed during the transition of growth states from exponential to quiescent. The increase in IGF-1R expression is preceded by an increase in IGF-1R mRNA transcript and is associated with an increase in the IGF-1R promoter activity. Inhibition of de novo transcription by actinomycin D increased the stability of IGF-1R mRNA in exponentially growing cells, thereby increasing the expression of IGF-1R to a level similar to that seen in quiescent cells. Increased IGF-1R signaling mediated the growth factor independence of quiescent MIA PaCa-2 cells through the constitutive activation of mitogen-activated protein kinase (MAPK). Exogenous IGF-1 increased cell proliferation and activated MAPK and AKT signaling pathways. The resistance of cells to apoptosis by IGF-1R signaling was mediated through MAPK and phosphatidylinositol 3-kinase (PI3K) pathways and a yet unidentified pathway(s). Thus, aberrant regulation of IGF-1R signaling is required for resistance to apoptosis and growth factor independence of MIA PaCa-2 cells. This likely protects cells from unfavorable conditions and allows cells to rapidly re-enter the cell cycle when conditions are favorable.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

IGF-1:

insulin-like growth factor-1

IGF-1R:

insulin-like growth factor-1 receptor

EGF:

epidermal growth factor

EGFR:

epidermal growth factor receptor

PDGFR:

platelet derived growth factor receptor

TGFα:

transforming growth factor α

IRS-1:

insulin receptor substrate-1

IR:

insulin receptor

IGFBP3:

insulin-like growth factor-1 binding protein-3

MAPK:

mitogen-activated protein kinase

PI3K:

phosphatidylinositol 3-kinase

JAK:

Janus kinase

STAT:

signal transducer and activator of transcription

PARP:

poly-(ADP-ribose) polymerase

STAM2:

signal transduction adaptor molecule

FACS:

fluorescence-activated cell sorter

SFM:

serum-free medium

RNA:

ribonucleic acid

mRNA:

messenger RNA

DNA:

deoxyribonucleic acid

PBS:

phosphate-buffered saline

TBST:

Tris-buffered saline/Tween20

DMEM:

Dulbecco's modified Eagle's medium

EDTA:

ethylene-dichloride tetraacetic acid

SDS-PAGE:

sodium dodecyl sulfate-polyacrylamide gel electrophoresis

RPA:

RNase protection assay

References

  • Baron V, Schwartz M . 2000 J. Biol. Chem. 275: 39318–39323

  • Baserga R . 2000 Oncogene 19: 5574–5581

  • Bergmann U, Fuantomi H, Yokoyama M, Beger HG, Korc M . 1995 Cancer Res. 55: 2007–2011

  • Bergmann U, Funatomi H, Kornmann M, Beger HG, Korc M . 1996 Biochem. Biophys. Res. Commun. 220: 886–890

  • Butler AA, Yakar S, Gewolb IH, Karas M, Okubo Y, LeRoith D . 1998 Comp. Biochem. Physiol. B. Biochem. Mol. Biol. 121: 19–26

  • Chen J, Liu TH . 1994 Zentralbl. Pathol. 140: 265–270

  • Chi MM, Schlein AL, Moley KH . 2000 Endocrinology 141: 4784–4792

  • Chin L-S, Raynor MC, Wei X, Chen H-Q, Li L . 2001 J. Biol. Chem. 276: 7069–7078

  • Coppola D . 2000 Cancer Control 7: 421–427

  • Devi GR, Yang DH, Rosenfeld RG, Oh Y . 2000 Endocrinology 141: 4171–4179

  • DiGiovanni J, Bol DK, Wilker E, Beltran L, Carbajal S, Moats S, Ramirez A, Jorcano J, Kiguchi K . 2000 Cancer Res. 60: 1561–1570

  • Dufourny B, Alblas J, van Teeffelen HA, van Schaik FM, van der Burg B, Steenbergh PH, Sussenbach JS . 1997 J. Biol. Chem. 272: 31163–31171

  • Flossman-Kast BB, Jehle PM, Hoeflich A, Adler G, Lutz MP . 1998 Cancer Res. 58: 3551–3554

  • Freeman JW, Mattingly CA, Strodel WE . 1995 J. Cell. Physiol. 165: 155–163

  • Giannella-Neto D, Kamyar A, Sharifi B, Pirola CJ, Kupfer J, Rosenfeld RG, Forrester JS, Fagin JA . 1992 Circ. Res. 71: 646–656

  • Gooch JL, van der Berg CL, Yee D . 1999 Breast Cancer Res. Treat. 56: 1–10

  • Grothey A, Voigt W, Schober C, Muller T, Dempke W, Schmoll HJ . 1999 J. Cancer Res. Clin. Oncol. 125: 166–173

  • Hernandez ER, Hurwitz A, Vera A, Pellicer A, Adashi EY, LeRoith D, Roberts Jr CT . 1992 J. Clin. Endocrinol. Metab. 74: 419–425

  • Howell GM, Humphrey LE, Ziober BL, Awwad R, Periyasamy B, Koterba A, Li W, Willson JKV, Coleman K, Carboni J, Lynch M, Brattain MG . 1998 Mol. Cell. Biol. 18: 303–313

  • Ignatoski KM, Lapointe AJ, Radany EH, Ethier SP . 1999 Endocrinology 140: 3615–3622

  • Ishiwata T, Bergmann U, Kornmann M, Lopez M, Beger HG, Korc M . 1997 Pancreas 15: 367–373

  • Jackson JG, Yee D . 1999 Growth Hormone and IGF Research 9: 280–289

  • Jiang D, Yang H, Willson JKV, Liang J, Humphrey LE, Zborowska E, Wang D, Foster J, Fan R, Brattain MG . 1998 J. Biol. Chem. 273: 31471–31479

  • Kim H, Muller WJ . 1999 Exp. Cell. Res. 253: 78–87

  • Korc M, Chandrasekar B, Yamanaka Y, Friess H, Buchler M, Beger HG . 1992 J. Clin. Invest. 90: 1352–1360

  • Kornmann M, Maruyama H, Bergmann U, Tangvoranuntakul P, Beger HG, White MF, Korc M . 1998 Cancer Res. 58: 4250–4254

  • Kulik G, Klippel A, Weber MJ . 1997 Mol. Cell. Biol. 17: 1595–1606

  • Kulik G, Weber MJ . 1998 Mol. Cell. Biol. 18: 6711–6718

  • Lee CT, Wu S, Gabrivolich D, Chen H, Nadaf-Rahrov S, Ciernick IF, Carbone DP . 1996 Cancer Res. 56: 3038–3041

  • Lin J, Adam RM, Santiestevan E, Freeman MR . 1999 Cancer Res. 59: 2891–2897

  • Liu RY, Fan C, Garcia R, Jove R, Zuckerman KS . 1999 Blood 93: 2369–2379

  • Neuenschwander S, Roberts Jr CT, LeRoith D . 1995 Endocrinology 136: 4298–4303

  • Nowell PC . 1976 Science 194: 23–28

  • Parker SL, Tong T, Bolden S, Wingo PA . 1997 CA Cancer J. Clin. 47: 5–27

  • Parrizas M, Saltiel AR, LeRoith D . 1997 J. Biol. Chem. 272: 154–161

  • Peruzzi F, Prisco M, Dews M, Salomoni P, Grassilli E, Romano G, Calabretta B, Baserga R . 1999 Mol. Cell. Biol. 19: 7203–7215

  • Porter AC, Vaillancourt RR . 1998 Oncogene 17: 1343–1352

  • Prager D, Li HL, Asa S, Melmed S . 1994 Proc. Natl. Acad. Sci. USA 91: 2181–2185

  • Prisco M, Hongo A, Rizzo MG, Sacchi A, Baserga R . 1997 Mol. Cell. Biol. 17: 1084–1092

  • Prisco M, Romano G, Peruzzi F, Valentinis B, Baserga R . 1999 Horm. Metab. Res. 31: 80–89

  • Reiss K, Yumet G, Shan S, Huang Z, Alnemri E, Srinivasula SM, Wang JY, Morrione A, Baserga R . 1999 J. Cell. Physiol. 181: 124–135

  • Ricort JM, Binoux M . 2001 Endocrinology 142: 108–113

  • Supino-Rosin L, Yoshimura A, Yarden Y, Elazar Z, Neumann D . 2000 J. Biol. Chem. 275: 21850–21855

  • Swantek JL, Baserga R . 1999 Endocrinology 140: 3163–3169

  • Tominaga S, Kuroishi T . 1998 Semin. Surg. Oncol. 15: 3–7

  • Wang L, Adamo ML . 2000 Endocrinology 141: 2481–2489

  • Werner H, Bach MA, Stannard B, Roberts Jr CT, LeRoith D . 1992 Mol. Endocrinol. 6: 1545–1558

  • Worthylake R, Opresko LK, Wiley HS . 1999 J. Biol. Chem. 274: 8865–8874

  • Zahradka P, Werner J, Yau L . 1998 Biochim. Biophys. Acta 1375: 131–139

  • Zong CS, Chan J, Levy DE, Horvath C, Sadowski HB, Wang L-H . 2000 J. Biol. Chem. 275: 15099–15105

Download references

Acknowledgements

We thank Drs Derek LeRoith (National Institute of Health; Bethesda, Maryland), Charles Roberts (Oregon Health Science University, Portland, Oregon), and Haim Werner (Tel Aviv University; Tel Aviv, Israel) for providing the human IGF-1R receptor plasmids. We also thank Mr Charles Thomas (FACS Laboratory, UTHSCSA) for the FACS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James W Freeman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nair, P., De Armond, D., Adamo, M. et al. Aberrant expression and activation of insulin-like growth factor-1 receptor (IGF-1R) are mediated by an induction of IGF-1R promoter activity and stabilization of IGF-1R mRNA and contributes to growth factor independence and increased survival of the pancreatic cancer cell line MIA PaCa-2. Oncogene 20, 8203–8214 (2001). https://doi.org/10.1038/sj.onc.1205044

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205044

Keywords

This article is cited by

Search

Quick links