Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells

Abstract

Rheb (Ras homolog enriched in brain) is a member of the Ras family of proteins, and is in the immediate Ras/Rap/Ral subfamily. We found in three different mammalian cell lines that Rheb was highly activated, to levels much higher than for Ras or Rap 1, and that Rheb's activation state was unaffected by changes in growth conditions. Rheb's high activation was not secondary to unique glycine to arginine, or glycine to serine substitutions at positions 14 and 15, corresponding to Ras residues 12 and 13, since Rheb R14G and R14G, S15G mutants had similarly high activation levels as wild type Rheb. These data are consistent with earlier work which showed that purified Rheb has similar GTPase activity as Ras, and suggest a relative intracellular deficiency of Rheb GTPase activating proteins (GAPs) compared to Rheb activators. Further evidence for relatively low intracellular GAP activity was that increased Rheb expression led to a marked increase in Rheb activation. Rheb, like Ras and Rap1, bound B-Raf kinase, but in contrast to Ras and Rap 1, Rheb inhibited B-Raf kinase activity and prevented B-Raf-dependent activation of the transcription factor Elk-1. Thus, Rheb appears to be a unique member of the Ras/Rap/Ral subfamily, and in mammalian systems may serve to regulate B-Raf kinase activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Barbacid M . 1987 Annu. Rev. Biochem. 56: 779–827

  • Calés C, Hancock JF, Marshall CJ, Hall A . 1988 Nature 332: 548–551

  • Campbell SL, Khosravi-Far R, Rossman KL, Clark GF, Der CJ . 1998 Oncogene 17: 1395–1413

  • Catling AD, Reuter CWM, Cox ME, Parsons SJ, Weber MJ . 1994 J. Biol. Chem. 269: 30014–30021

  • Clark GJ, Kinch MS, Rogers-Graham K, Sebti SM, Hamilton AD, Der CJ . 1997 J. Biol. Chem. 272: 10608–10615

  • Dupuy AJ, Morgan K, von Lintig FC, Shen H, Acar H, Hasz DE, Jenkins NA, Copeland NG, Boss GR, Largaespada DA . 2001 J. Biol. Chem. 276: 11804–11811

  • Eychene A, Dusanter-Fourt I, Barnier JV, Papin C, Charon M, Gisselbrecht S, Calothy G . 1995 Oncogene 10: 1159–1165

  • Gromov PS, Madsen P, Tomerup N, Celis JE . 1995 FEBS Lett. 377: 221–226

  • Guha A, Lau N, Huvar I, Gutmann D, Provias J, Pawson T, Boss G . 1996 Oncogene 12: 507–513

  • Haugh JM, Huang AC, Wiley HS, Wells A, Lauffenburger DA . 1999 J. Biol. Chem. 274: 34350–34360

  • Jaiswal RK, Moodie SA, Wolfman A, Landreth GE . 1994 Mol. Cell. Biol. 14: 6944–6953

  • Jelinek T, Dent P, Sturgill TW, Weber MJ . 1996 Mol. Cell. Biol. 16: 1027–1034

  • Johnson NL, Gardner AM, Diener KM, Lange-Carter CA, Gleavy J, Jarpe MB, Minden A, Karin M, Zon LI, Johnson GL . 1996 J. Biol. Chem. 271: 3229–3237

  • Kuroda S, Ohtsuka T, Yamamori B, Fukui K, Shimizu K, Takai Y . 1996 J. Biol. Chem. 271: 14680–14683

  • Mach KE, Furge KA, Albright CF . 2000 Genetics 155: 611–622

  • Marais R, Light Y, Paterson HF, Mason CS, Marshall CJ . 1997 J. Biol. Chem. 272: 4378–4383

  • Mischak H, Seitz T, Janosch P, Eulitz M, Steen H, Schellerer M, Philipp A, Kolch W . 1996 Mol. Cell. Biol. 16: 5409–5418

  • Mizuki N, Kimura M, Ohno S, Miyata S, Sato M, Ando H, Ishihara M, Goto K, Watanabe S, Yamazaki M, Ono A, Taguchi S, Okumura K, Nogami M, Taguchi T, Ando A, Inoko H . 1996 Genomics 34: 114–118

  • Moodie SA, Paris MJ, Kolch W, Wolfman A . 1994 Mol. Cell. Biol. 14: 7153–7162

  • Papin C, Denouel-Galy A, Laugier D, Calothy G, Eychene A . 1998 J. Biol. Chem. 273: 24939–24947

  • Papin C, Denouel A, Calothy G, Eychene A . 1996 Oncogene 12: 2213–2221

  • Papin C, Eychene A, Brunet A, Pages G, Pouyssegur J, Calothy G, Barnier JV . 1995 Oncogene 10: 1647–1651

  • Pilz RB, Huvar I, Scheele JS, Van den Berghe G, Boss GR . 1997 Cell Growth Differ. 8: 53–59

  • Prigent SA, Nagane M, Lin H, Huvar I, Boss GR, Feramisco JR, Cavenee WK, Su Huang H-J . 1996 J. Biol. Chem. 271: 25639–25645

  • Pritchard CA, Samuels ML, Bosch E, McMahon M . 1995 Mol. Cell. Biol. 15: 6430–6431

  • Qiu W, Zhuang S, von Lintig FC, Boss GR, Pilz RB . 2000 J. Biol. Chem. 275: 31921–31929

  • Quilliam LA, Der CJ, Clark R, O'Rourke EC, Zhang K, McCormick F, Bokoch GM . 1990 Mol. Cell. Biol. 10: 2901–2908

  • Reuter CWM, Catling AD, Jelinek T, Weber MJ . 1995 J. Biol. Chem. 270: 7644–7655

  • Reuther GW, Der CJ . 2000 Curr. Opin. Cell Biol. 12: 157–165

  • Satoh T, Endo M, Nakafuko M, Akyama T, Yamamoto T, Kaziro Y . 1990a Proc. Natl. Acad. Sci. USA 87: 7926–7929

  • Satoh T, Endo M, Nakafuko M, Nakamura S, Kaziro Y . 1990b Proc. Natl. Acad. Sci. USA 87: 5993–5997

  • Scheele JS, Pilz RB, Quilliam LA, Boss GR . 1994 J. Biol. Chem. 269: 18599–18606

  • Scheele JS, Rhee JM, Boss GR . 1995 Proc. Natl. Acad. Sci. USA 92: 1097–1100

  • Sharma PM, Egawa K, Huang Y, Martin JL, Huvar I, Boss GR, Olefsky JM . 1998 J. Biol. Chem. 273: 18528–18537

  • Suhasini M, Li H, Lohmann SM, Boss GR, Pilz RB . 1998 Mol. Cell. Biol. 18: 6983–6994

  • Tian W, Boss GR, Cohen DM . 2000 Am. J. Physiol. 278: 372–380

  • Urano J, Ellis C, Clark GJ, Tamanoi F . 2001 Methods Enzymol. 333: 217–231

  • Urano J, Tabancay AP, Yang W, Tamanoi F . 2000 J. Biol. Chem. 275: 11198–11206

  • von Lintig FC, Pilz RB, Boss GR . 2000 Oncogene 19: 4029–4034

  • Vossler MR, Yao H, York RD, Pan M-G, Rim CS, Stork PJS . 1997 Cell 89: 73–82

  • White MA, Nicolette C, Minden A, Polverino A, Van Aeist L, Karin M, Wigler MH . 1995 Cell 80: 533–541

  • Yamagata K, Sanders LK, Kaufmann WE, Yee W, Barnes CA, Nathans D, Worley PF . 1994 J. Biol. Chem. 269: 16333–16339

  • Yee WM, Worley PF . 1997 Mol. Cell. Biol. 17: 921–933

Download references

Acknowledgements

This work was supported in part by USPHS Grants GM55586 (to RB Pilz), CA76968 and CA81115 (to GR Boss) and MH53608 (to PF Worley); E Im was supported by a UCSD Institute for Research on Aging Scholarship. We thank G Johnson, M Karin, L Quilliam, P Stork and M Wigler for generously providing the indicated plasmids.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renate B Pilz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Im, E., von Lintig, F., Chen, J. et al. Rheb is in a high activation state and inhibits B-Raf kinase in mammalian cells. Oncogene 21, 6356–6365 (2002). https://doi.org/10.1038/sj.onc.1205792

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205792

Keywords

This article is cited by

Search

Quick links