Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-β and bone morphogenetic protein

Abstract

The Runx family of transcription factors plays pivotal roles during normal development and in neoplasias. In mammals, Runx family genes are composed of Runx1 (Pebp2αB/Cbfa2/Aml1), Runx2 (Pebp2αA/Cbfa1/Aml3) and Runx3 (Pebp2αC/Cbfa3/Aml2). Runx1 and Runx3 are known to be involved in leukemogenesis and gastric carcinogenesis, respectively. Runx2, on the other hand, is a common target of transforming growth factor-β1 (TGF-β1) and bone morphogenetic protein-2 (BMP-2) and plays an essential role in osteoblast differentiation. Runx2 is induced by the receptor-activated Smad; Runx2 mediates the blockage of myogenic differentiation and induces osteoblast differentiation in C2C12 pluripotent mesenchymal precursor cells. However, Smad does not directly induce Runx2 expression; an additional step of de novo protein synthesis is required. Here we report that Smad-induced junB functions as an upstream activator of Runx2 expression. Furthermore, not only the Smad pathway but also the mitogen-activated protein kinase (MAPK) cascades are involved in the induction of Runx2 by TGF-β1 and BMP-2. Our results demonstrate that following TGF-β and BMP induction, both the Smad and p38 MAPK pathways converge at the Runx2 gene to control mesenchymal precursor cell differentiation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Chalaux E, Lopez-Rovira T, Rosa JL, Bartrons R, Ventura F . 1998 J. Biol. Chem. 273: 537–543

  • Chiu R, Angel P, Karin M . 1989 Cell 59: 979–986

  • Derynck R, Akhurst RJ, Balmain A . 2001 Nat. Genet. 29: 117–129

  • Ducy P . 2000 Dev. Dyn. 219: 461–471

  • Ducy P, Zhang R, Geoffroy V, Ridall AL, Karsenty G . 1997 Cell 89: 747–754

  • Fujii M, Takeda K, Imamura T, Aoki H, Sampath TK, Enomoto S, Kawabata M, Kato M, Ichijo H, Miyazono K . 1999 Mol. Biol. Cell. 10: 3801–3813

  • Gallea S, Lallemand F, Atfi A, Rawadi G, Ramez V, Spinella-Jaegle S, Kawai S, Faucheu C, Huet L, Baron R, Roman-Roman S . 2001 Bone 28: 491–498

  • Hanafusa H, Ninomiya-Tsuji J, Masuyama N, Nishita M, Fujisawa J, Shibuya H, Matsumoto K, Nishida E . 1999 J. Biol. Chem. 274: 27161–27167

  • Heldin CH, Miyazono K, ten Dijke P . 1997 Nature 390: 465–471

  • Hogan BL . 1996 Genes Dev. 10: 1580–1594

  • Jonk LJ, Itoh S, Heldin Ch, ten Dijke P, Kruijer W . 1998 J. Biol. Chem. 273: 21145–21152

  • Katagiri T, Yamaguchi A, Komaki M, Abe E, Takahashi N, Ikeda T, Rosen V, Wozney JM, Fujisawa-Sehara A, Suda T . 1994 J. Cell Biol. 127: 1755–1766

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki YS, Kishimoto T . 1997 Cell 89: 755–764

  • Lee B, Thirunavukkarasu K, Zhou L, Pastore L, Baldini A, Hecht J, Geoffroy V, Ducy P, Karsenty G . 1997 Nat. Genet. 16: 307–310

  • Lee KS, Kim HJ, Li QL, Chi XZ, Ueta C, Komori T, Wozney JM, Kim EG, Choi JY, Ryoo HM, Bae SC . 2000 Mol. Cell. Biol. 20: 8783–8792

  • Lian JB, Stein GS . 1995 Iowa Orthop. J. 15: 118–140

  • Li QL, Ito K, Sakakura C, Fukamachi H, Inoue K, Chi XZ, Lee KY, Nomura S, Lee CW, Han SB, Kim HM, Kim WJ, Yamamoto H, Yamashita N, Yano T, Ikeda T, Itohara S, Inazawa J, Abe T, Hagiwara A, Yamagishi H, Ooe A, Kaneda A, Sugimura T, Ushijima T, Bae SC, Ito Y . 2002 Cell 109: 113–124

  • Look AT . 1997 Science 278: 1059–1064

  • Massague J . 1998 Annu. Rev. Biochem. 67: 753–791

  • Mundlos S, Otto F, Mundlos C, Mulliken JB, Aylsworth AS, Albright S, Lindhout D, Cole WG, Henn W, Knoll JH, Owen MJ, Mertelsmann R, Zabel BU, Olsen BR . 1997 Cell 89: 773–779

  • Nishimura R, Kato Y, Chen D, Harris SE, Mundy GR, Yoneda T . 1998 J. Biol. Chem. 273: 1872–1879

  • Noguchi K, Yamana H, Kitanaka C, Mochizuki T, Kokubu A, Kuchino Y . 2000 Biochem. Biophys. Res. Commun. 267: 221–227

  • North T, Gu TL, Stacy T, Wang Q, Howard L, Binder M, Marin-Padilla M, Speck NA . 1999 Development 126: 2563–2575

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G, Downing JR . 1996 Cell 84: 321–330

  • Olive M, Krylov D, Echlin DR, Gardner K, Taparowsky E, Vinson C . 1997 J. Biol. Chem. 272: 18586–18594

  • Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB, Owen MJ . 1997 Cell 89: 765–771

  • Reimold AM, Grusby MJ, Kosaras B, Fries JW, Mori R, Maniwa S, Clauss IM, Collins T, Sidman RL, Glimcher MJ, Glimcher LH . 1996 Nature 379: 262–265

  • Roberts AB, Flanders KC, Kondaiah P, Thompson NL, Obberghen-Schilling E, Wakefield L, Rossi P, de Crombrugghe B, Heine U, Sporn MB . 1988 Recent Prog. Horm. Res. 44: 157–197

  • Sambrook J, Frisch EF, Maniatis T . 1988 Molecular cloning: a laboratory manual 2dn edn Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press

    Google Scholar 

  • Vaillant F, Blyth K, Terry A, Bell M, Cameron ER, Neil J, Stewart M . 1999 Oncogene 18: 7124–7134

  • Wozney JM, Rosen V, Celeste AJ, Mitsock LM, Whitters MJ, Kriz RW, Hewick RM, Wang EA . 1988 Science 242: 1528–1534

  • Xiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G, Franceschi RT . 2000 J. Biol. Chem. 275: 4453–4459

  • Xiao ZS, Hinson TK, Quarles LD . 1999 J. Cell Biochem. 74: 596–605

  • Yamamoto N, Akiyama S, Katagiri T, Namiki M, Kurokawa T, Suda T . 1997 Biochem. Biophys. Res. Commun. 238: 574–580

  • Yokomizo T, Ogawa M, Osato M, Kanno T, Yoshida H, Fujimoto T, Fraser S, Nishikawa S, Okaa H, Satake M, Noda T, Nishikawa S, Ito Y . 2001 Genes Cells 6: 13–23

  • Zhang YW, Yasui N, Ito K, Huang G, Fujii M, Hanai J, Nogami H, Ochi T, Miyazono K, Ito Y . 2000 Proc. Natl. Acad. Sci. USA 97: 10549–10554

Download references

Acknowledgements

This work was supported by a grant to S-C Bae from the Molecular Medicine Research Group Program (M1-0106-00-0064) of the Ministry of Science and Technology of Korea. This work was also supported by Korean Research Foundation grant KRF-2001-042-D0067.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suk-Chul Bae.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, KS., Hong, SH. & Bae, SC. Both the Smad and p38 MAPK pathways play a crucial role in Runx2 expression following induction by transforming growth factor-β and bone morphogenetic protein. Oncogene 21, 7156–7163 (2002). https://doi.org/10.1038/sj.onc.1205937

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1205937

Keywords

This article is cited by

Search

Quick links