Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells

Abstract

p130 is a member of the retinoblastoma family of pocket proteins, which includes pRB and p107. Unlike pRB and p107, p130 protein levels decrease dramatically following its hyperphosphorylation starting in the mid-G1 phase of the cell cycle. However, the mechanism leading to p130 downregulation is unknown. We have found that the proteasome inhibitor, lactacystin, inhibited p130 downregulation in T98G cells progressing through the G1/S transition and S phase and that p130 is multiubiquitylated in 293 cells. We have previously shown that ectopic expression of both cyclin D and E induces phosphorylation and downregulation of p130. Since the SKP1/Cul1/SKP2 E3 ubiquitin ligase complex mediates ubiquitylation of substrates previously phosphorylated by cyclin-dependent kinases, we investigated the potential role of this ubiquitin ligase in mediating p130 downregulation. We found that p130 interacts with SKP1, Cul-1 and SKP2 in human 293 cells. We also found that ectopic coexpression of SKP2 and p130 leads to dose-dependent downregulation of p130, reduces p130 protein half-life and induces p130 ubiquitylation in these cells. Moreover, adenoviral-mediated expression of SKP2 accelerates downregulation of endogenous hyperphosphorylated p130 in mitogen-stimulated T98G cells and primary WI38 fibroblasts. We conclude that p130 is a substrate of the SCFSKP2 ubiquitin ligase and this E3 ligase regulates p130 abundance during the cell cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Adams PD, Sellers WR, Sharma SK, Wu AD, Nalin CM and Kaelin WG . (1996). Mol. Cell. Biol., 16, 6623–6633.

  • Ausubel FM, Brent R, Kington RE, Moore DD, Seidman JG, Smith JA and Struhl KE . (1988). Current Protocols in Molecular Biology Greene Publishing Associates and Wiley-Interscience: New York.

    Google Scholar 

  • Calbó J, Parreño M, Sotillo E, Yong T, Mazo A, Garriga J and Graña X . (2002). J. Biol. Chem., 277, 50263–50274.

  • Carrano AC, Eytan E, Hershko A and Pagano M . (1999). Nat. Cell Biol., 1, 193–199.

  • Castano E, Kleyner Y and Dynlacht BD . (1998). Mol. Cell. Biol., 18, 5380–5391.

  • Cheng L, Rossi F, Fang W, Mori T and Cobrinik D . (2000). J. Biol. Chem., 275, 30317–30325.

  • Chiarle R, Fan Y, Piva R, Boggino H, Skolnik J, Novero D, Palestro G, De Wolf-Peeters C, Chilosi M, Pagano M and Inghirami G . (2002). Am. J. Pathol., 160, 1457–1466.

  • Clurman BE, Sheaff RJ, Thress K, Groudine M and Roberts JM . (1996). Genes Dev., 10, 1979–1990.

  • Coats S, Whyte P, Fero ML, Lacy S, Chung G, Randel E, Firpo E and Roberts JM . (1999). Curr. Biol., 9, 163–173.

  • Deluca A, Maclachlan TK, Bagella L, Dean C, Howard CM, Claudio PP, Baldi A, Khalili K and Giordano A . (1997). J. Biol. Chem., 272, 20971–20974.

  • DeSalle LM and Pagano M . (2001). FEBS Lett., 490, 179–189.

  • Garriga J, Limon A, Mayol X, Rane SG, Albrecht JH, Reddy EP, Andrés V and Graña X . (1998). Biochem. J., 333, 645–654.

  • Garriga J, Mayol X and Graña X . (1996). Biochem. J., 319, 293–298.

  • Graña X, Garriga J and Mayol X . (1998). Oncogene, 17, 3365–3383.

  • Graña X and Reddy EP . (1995). Oncogene, 11, 211–219.

  • Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J and Krek W . (2001). Proc. Natl. Acad. Sci. USA, 98, 5043–5048.

  • Hansen K, Farkas T, Lukas J, Holm K, Ronnstrand L and Bartek J . (2001). EMBO J., 20, 422–432.

  • Harper JW . (2001). Curr. Biol., 11, R431–R435.

  • Hershko D, Bornstein G, Ben-Izhak O, Carrano A, Pagano M, Krausz MM and Hershko A . (2001). Cancer, 91, 1745–1751.

  • Kiess M, Gill RM and Hamel PA . (1995). Cell Growth Differ., 6, 1287–1298.

  • Krek W . (1998). Curr. Opin. Genet. Dev., 8, 36–42.

  • Lacy S and Whyte P . (1997). Oncogene, 14, 2395–2406.

  • Latres E, Chiarle R, Schulman BA, Pavletich NP, Pellicer A, Inghirami G and Pagano M . (2001). Proc. Natl. Acad. Sci. USA, 98, 2515–2520.

  • Lim MS, Adamson A, Lin Z, Perez-Ordonez B, Jordan RC, Tripp S, Perkins SL and Elenitoba-Johnson KS . (2002). Blood, 100, 2950–2956.

  • Lu L, Schulz H and Wolf DA . (2002). BMC Cell Biol., 3, 22.

  • Masuda TA, Inoue H, Sonoda H, Mine S, Yoshikawa Y, Nakayama K and Mori M . (2002). Cancer Res., 62, 3819–3825.

  • Mayol X, Garriga J and Graña X . (1995). Oncogene, 11, 801–808.

  • Mayol X, Garriga J and Graña X . (1996). Oncogene, 13, 237–246.

  • Mayol X and Graña X . (1998). Front. Biosci., 3, 11–24.

  • Mulligan G and Jacks T . (1998). Trends Genet., 14, 223–229.

  • Parreño M, Garriga J, Limon A, Albrecht J and Graña X . (2001). Oncogene, 20, 4793–4806.

  • Parreño M, Garriga J, Limon A, Mayol X, Beck Jr GR, Moran E and Graña X . (2000). J. Virol., 74, 3166–3176.

  • Penin RM, Fernandez-Figueras MT, Puig L, Rex J, Ferrandiz C and Ariza A . (2002). Mod. Pathol., 15, 1227–1235.

  • Prince AM, May JS, Burton GR, Lyle RE and McGehee Jr RE . (2002). Biochem. Biophys. Res. Commun., 290(3), 1066–1071.

  • Richon VM, Lyle RE and McGehee Jr RE . (1997). J. Biol. Chem., 272, 10117–10124.

  • Signoretti S, Di Marcotullio L, Richardson A, Ramaswamy S, Isaac B, Rue M, Monti F, Loda M and Pagano M . (2002). J. Clin. Invest., 110, 633–641.

  • Smith EJ, Leone G and Nevins JR . (1998). Cell Growth Differ., 9, 297–303.

  • Sutterluty H, Chatelain E, Marti A, Wirbelauer C, Senften M, Muller U and Krek W . (1999). Nat. Cell Biol., 1, 207–214.

  • Tedesco D, Lukas J and Reed SI . (2002). Genes Dev., 16, 2946–2957.

  • Woo MS, Sanchez I and Dynlacht BD . (1997). Mol. Cell. Biol., 17, 3566–3579.

  • Yang G, Ayala G, Marzo AD, Tian W, Frolov A, Wheeler TM, Thompson TC and Harper JW . (2002). Clin. Cancer Res., 8, 3419–3426.

  • Yew PR . (2001). J. Cell Physiol., 187, 1–10.

  • Zalvide J, Stubdal H and DeCaprio JA . (1998). Mol. Cell. Biol., 18, 1408–1415.

Download references

Acknowledgements

We thank Willhem Krek and Jeffry Albrecht for providing recombinant adenoviruses and plasmids, Ed Harlow for antibodies and D Bohmann for the HA-ubiquitin construct. We thank Ana Limón for initial observations and useful discussions. We thank Renée Marshall, Elena Sotillo and Dominic Salerno for critically reading the manuscript, Rosemary Dillon for manuscript editing and May Truongcao for technical assistance. JC was partially supported by fellowships from Dirección General de Investigación Científica y Técnica (Ministerio de Educación y Cultura, Spain). This work was supported in part by grants to XG including a grant from the National Institute of General Medical Sciences (NIH-R29, GM54894), a grant (NIH R01, AI45450) and a Career Development Award (K02 AI01823) from the National Institute of Allergy and Infectious Diseases and a WW Smith grant (A9802/9901). Facilities used for this work were supported in part by a Shared Resources for Cancer Research Grant R24 (CA88261-01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xavier Graña.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bhattacharya, S., Garriga, J., Calbó, J. et al. SKP2 associates with p130 and accelerates p130 ubiquitylation and degradation in human cells. Oncogene 22, 2443–2451 (2003). https://doi.org/10.1038/sj.onc.1206339

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206339

Keywords

This article is cited by

Search

Quick links