Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

DNA methyltransferase 3b contributes to oncogenic transformation induced by SV40T antigen and activated Ras

Abstract

Transcriptional silencing of tumor suppressor genes in association with DNA methylation contributes to malignant transformation. However, the specific DNA methyltransferases that initiate this process are unknown. Here we show that a de novo DNA methyltransferase, DNMT3b, substantially contributes to the oncogenic phenotype in a lung cancer model. Normal human bronchial epithelial (NHBE) cells expressing telomerase, SV40 large T antigen, and activated Ras were immortal, formed colonies in soft agar, and expressed DNMT3b. Antisense suppression of DNMT3b prevented soft agar growth. Furthermore, mouse embryo fibroblasts expressing T antigen and Ras formed soft agar colonies and large tumors, but fibroblasts from Dnmt3b−/− mice did not grow in soft agar and were much less tumorigenic in vivo. The tumor suppressor genes, FHIT, TSLC1, and RASSF1A were downregulated in transformed NHBE cells, and antisense DNMT3b treatment resulted in re-expression of FHIT and TSLC1. While expression of TSCL1 correlated with methylation of CpG dinucleotides in its promoter region, the expression of FHIT did not, suggesting that DNMT3b may silence genes by several mechanisms including direct DNA methylation or recruitment of proteins that modify chromatin. Regardless of mechanism, our data indicate that DNMT3b plays an important role in transformation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Aapola U, Kawasaki K, Scott HS, Ollila J, Vihinen M, Heino M, Shintani A, Minoshima S, Krohn K, Antonarakis SE, Shimizu N, Kudoh J and Peterson P . (2000). Genomics, 65, 293–298.

  • Aoki A, Suetake I, Miyagawa J, Fujio T, Chijiwa T, Sasaki H and Tajima S . (2001). Nucleic Acids Res., 29, 3506–3512.

  • Bachman KE, Rountree MR and Baylin SB . (2001). J. Biol. Chem., 276, 32282–32287.

  • Bakin AV and Curran T . (1999). Science, 283, 387–390.

  • Beaulieu N, Morin S, Chute IC, Robert MF, Nguyen H and MacLeod AR . (2002). J. Biol. Chem., 277, 28176–28181.

  • Belinsky SA, Nikula KJ, Baylin SB and Issa JP . (1996). Proc. Natl. Acad. Sci. USA, 93, 4045–4050.

  • Bestor T, Laudano A, Mattaliano R and Ingram V . (1988). J. Mol. Biol., 203, 971–983.

  • Cameron EE, Bachman KE, Myohanen S, Herman JG and Baylin SB . (1999). Nat. Genet., 21, 103–107.

  • Chan MF, Liang G and Jones PA . (2000). Curr. Top Microbiol. Immunol., 249, 75–86.

  • Chen RZ, Pettersson U, Beard C, Jackson-Grusby L and Jaenisch R . (1998). Nature, 395, 89–93.

  • Dammann R, Li C, Yoon JH, Chin PL, Bates S and Pfeifer GP . (2000). Nat. Genet., 25, 315–319.

  • Fournel M, Sapieha P, Beaulieu N, Besterman JM and MacLeod AR . (1999). J. Biol. Chem., 274, 24250–24256.

  • Fuks F, Burgers WA, Godin N, Kasai M and Kouzarides T . (2001). EMBO J., 20, 2536–2544.

  • Gibson UE, Heid CA and Williams PM . (1996). Genome Res., 6, 995–1001.

  • Gnarra JR, Tory K, Weng Y, Schmidt L, Wei MH, Li H, Latif F, Liu S, Chen F, Duh FM, Lobensky I, Duan DR, Florence C, Poza R, Wzlther MM, Bzader NH, Grossman HB, Brauch H, Pemer S, Brocks JD, Isaacs WB, Lehrman MI, Zbar B and Linehan WM . (1994). Nat. Genet., 7, 85–90.

  • Greger V, Debus N, Lohmann D, Hopping W, Passarge E and Horsthemke B . (1994). Hum. Genet., 94, 491–496.

  • Hahn WC, Counter CM, Lundberg AS, Beijersbergen RL, Brooks MW and Weinberg RA . (1999). Nature, 400, 464–468.

  • Hansen RS, Wijmenga C, Luo P, Stanek AM, Canfield TK, Weemaes CM and Gartler SM . (1999). Proc. Natl. Acad. Sci. USA, 96, 14412–14417.

  • He TC, Zhou S, da Costa LT, Yu J, Kinzler KW and Vogelstein B . (1998). Proc. Natl. Acad. Sci. USA, 95, 2509–2514.

  • Herman JG, Jen J, Merlo A and Baylin SB . (1996). Cancer Res., 56, 722–727.

  • Herman JG, Latif F, Weng Y, Lerman MI, Zbar B, Liu S, Samid D, Duan DS, Gnarra JR, Linehan WM and Baylin SB . (1994). Proc. Natl. Acad. Sci. USA, 91, 9700–9704.

  • Herman JG, Merlo A, Mao L, Lapidus RG, Issa JP, Davidson NE, Sidransky D and Baylin SB . (1995). Cancer Res., 55, 4525–4530.

  • Jones PL, Veenstra GJ, Wade PA, Vermaak D, Kass SU, Landsberger N, Strouboulis J and Wolffe AP . (1998). Nat. Genet., 19, 187–191.

  • Kuramochi M, Fukuhara H, Nobukuni T, Kanbe T, Maruyama T, Ghosh HP, Pletcher M, Isomura M, Onizuka M, Kitamura T, Sekiya T, Reeves RH and Murakami Y . (2001). Nat. Genet., 27, 427–430.

  • Laird PW and Jaenisch R . (1996). Annu. Rev. Genet., 30, 441–464.

  • Lauster R, Trautner TA and Noyer-Weidner M . (1989). J. Mol. Biol., 206, 305–312.

  • Lee PJ, Washer LL, Law DJ, Boland CR, Horon IL and Feinberg AP . (1996). Proc. Natl. Acad. Sci. USA, 93, 10366–10370.

  • Li E, Bestor TH and Jaenisch R . (1992). Cell, 69, 915–926.

  • Lyko F, Ramsahoye BH, Kashevsky H, Tudor M, Mastrangelo MA, Orr-Weaver TL and Jaenisch R . (1999). Nat. Genet., 23, 363–366.

  • MacLeod AR and Szyf M . (1995). J. Biol. Chem., 270, 8037–8043.

  • Merlo A, Herman JG, Mao L, Lee DJ, Gabrielson E, Burger PC, Baylin SB and Sidransky D . (1995). Nat. Med., 1, 686–692.

  • Morales CP, Holt SE, Ouellette M, Kaur KJ, Yan Y, Wilson KS, White MA, Wright WE and Shay JW . (1999). Nat. Genet., 21, 115–118.

  • Nan X, Ng HH, Johnson CA, Laherty CD, Turner BM, Eisenman RN and Bird A . (1998). Nature, 393, 386–389.

  • Ng HH, Zhang Y, Hendrich B, Johnson CA, Turner BM, Erdjument-Bromage H, Tempst P, Reinberg D and Bird A . (1999). Nat. Genet., 23, 58–61.

  • Ohta M, Inoue H, Cotticelli MG, Kastury K, Baffa R, Palazzo J, Siprashvili Z, Mori M, McCue P, Druck T, Croce CM and Kuebuer K . (1996). Cell, 84, 587–597.

  • Ohtani-Fujita N, Fujita T, Aoike A, Osifchin NE, Robbins PD and Sakai T . (1993). Oncogene, 8, 1063–1067.

  • Okano M, Bell DW, Haber DA and Li E . (1999). Cell, 99, 247–257.

  • Okano M, Xie S and Li E . (1998a). Nat. Genet., 19, 219–220.

  • Okano M, Xie S and Li E . (1998b). Nucleic Acids Res., 26, 2536–2540.

  • Otterson GA, Khleif SN, Chen W, Coxon AB and Kaye FJ . (1995). Oncogene, 11, 1211–1216.

  • Pogribny I, Yi P and James SJ . (1999). Biochem. Biophys. Res. Commun., 262, 624–628.

  • Posfai J, Bhagwat AS, Posfai G and Roberts RJ . (1989). Nucleic Acids Res., 17, 2421–2435.

  • Pradhan S, Cummings M, Roberts RJ and Adams RL . (1998). Nucleic Acids Res., 26, 1214–1222.

  • Rhee I, Bachman KE, Park BH, Jair KW, Yen RW, Schuebel KE, Cui H, Feinberg AP, Lengauer C, Kinzler KW, Baylin SB and Vogelstein B . (2002). Nature, 416, 552–556.

  • Rhee I, Jair KW, Yen RW, Lengauer C, Herman JG, Kinzler KW, Vogelstein B, Baylin SB and Schuebel KE . (2000). Nature, 404, 1003–1007.

  • Rios M and Williams DA . (1990). J. Cell. Physiol., 145, 434–443.

  • Robertson KD, Uzvolgyi E, Liang G, Talmadge C, Sumegi J, Gonzales FA and Jones PA . (1999). Nucleic Acids Res., 27, 2291–2298.

  • Rouleau J, MacLeod AR and Szyf M . (1995). J. Biol. Chem., 270, 1595–1601.

  • Sakai T, Toguchida J, Ohtani N, Yandell DW, Rapaport JM and Dryja TP . (1991). Am. J. Hum. Genet., 48, 880–888.

  • Shapiro GI, Edwards CD, Kobzik L, Godleski J, Richards W, Sugarbaker DJ and Rollins BJ . (1995). Cancer Res., 55, 505–509.

  • Slack A, Cervoni N, Pinard M and Szyf M . (1999). J. Biol. Chem., 274, 10105–10112.

  • Tanaka H, Shimada Y, Harada H, Shinoda M, Hatooka S, Imamura M and Ishizaki K . (1998). Cancer Res., 58, 3429–3434.

  • Vertino PM, Issa JP, Pereira-Smith OM and Baylin SB . (1994). Cell Growth Differ., 5, 1395–1402.

  • Wade PA, Gegonne A, Jones PL, Ballestar E, Aubry F and Wolffe AP . (1999). Nat. Genet., 23, 62–66.

  • Wu J, Issa JP, Herman J, Bassett Jr DE, Nelkin BD and Baylin SB . (1993). Proc. Natl. Acad. Sci. USA, 90, 8891–8895.

  • Xie S, Wang Z, Okano M, Nogami M, Li Y, He WW, Okumura K and Li, E . (1999). Gene, 236, 87–95.

  • Xu GL, Bestor TH, Bourc'his D, Hsieh CL, Tommerup N, Bugge M, Hulten M, Qu X, Russo JJ and Viegas-Pequignot E . (1999). Nature, 402, 187–191.

Download references

Acknowledgements

We thank Drs En Li and Masaki Okano for Dnmt3b−/− MEFs and advice; Drs James DeCaprio, Matthew Meyerson, Jeong Wu Lee, Takahiro Arai, Seitaro Fujishima, and Chiaki Takahashi for reagents and helpful comments; and Christine Penta for administrative assistance. The work was supported by the Novartis/Dana-Farber Drug Discovery Program (BJR), and the Uehara Memorial Foundation (KS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Barrett J Rollins.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soejima, K., Fang, W. & Rollins, B. DNA methyltransferase 3b contributes to oncogenic transformation induced by SV40T antigen and activated Ras. Oncogene 22, 4723–4733 (2003). https://doi.org/10.1038/sj.onc.1206510

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206510

Keywords

This article is cited by

Search

Quick links