Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

SUV39H1 interacts with AML1 and abrogates AML1 transactivity. AML1 is methylated in vivo

Abstract

Acute myeloid leukemia 1 (AML1) belongs to a family of DNA-binding proteins highly conserved through evolution. AML1 regulates the expression of several hematopoietic genes and is essential for murine fetal liver hematopoiesis. We report here that the histone methyltransferase SUV39H1, a mammalian ortholog of the Drosophila melanogaster SU(VAR) 3-9, forms complex with AML1. SUV39H1 methylates lysine 9 of the histone protein H3 leading to the formation of the high-affinity binding site on chromatin for proteins of the heterochromatin protein 1 family (HP1). The interaction of AML1 with SUV39H1 requires the N-terminus of AML1 where the Runt domain is located. Binding of AML1 to SUV39H1 abrogates the transactivating and DNA-binding properties of AML1 and dissociates the net-like nuclear structure of AML1. It has been reported that AML1 is capable of interaction with histone acetyl transferases (CBP, p300, and MOZ) and with component of the histone deacetylase complex (Sin3), and that the interaction with these coregulators affects the strength of AML1 in promoter regulation. Our data suggest that other enzymes are also involved in gene regulation by AML1 activity by modulating the affinity of AML1 for DNA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  • Barton K and Nucifora G . (2000). BioEssays, 22, 214–218.

  • Bird AP and Wolffe AP . (1999). Cell, 99, 451–454.

  • Boyes J, Byfield P, Nakatani Y and Ogryzko V . (1998). Nature, 396, 594–598.

  • Britos-Bray M, Ramirez M, Cao W, Wang X, Liu PP, Civin CI and Friedman AD . (1998). Blood, 92, 4344–4352.

  • Cameron EE, Bachman KE, Myohanen S, Herman JG and Baylin SB . (1999). Nat. Genet., 21, 103–107.

  • Cao W, Adya N, Britos-Bray M, Liu PP and Friedman AD . (1998). J. Biol. Chem., 273, 31534–31540.

  • Chakraborty S, Senyuk V, Sitailo S, Chi Y and Nucifora G . (2001). J. Biol. Chem., 276, 44936–44943.

  • Chakrabarti SR, Sood R, Nandi S and Nucifora G . (2000). Proc. Natl. Acad. Sci. USA, 97, 13281–13285.

  • Chan HM, Krstic-Demonacos M, Smith L, Demonacos C and La Thangue NB . (2001). Nat. Cell Biol., 3, 667–674.

  • El-Osta A and Wolffe AP . (2001). Biochem. Biophys. Res. Commun., 289, 733–737.

  • Fears S, Gavin M, Zhang DE, Hetherington C, BenDavid Y, Rowley JD and Nucifora G . (1997). Proc. Natl. Acad. Sci. USA, 94, 1949–1954.

  • Ferreira R, Naguibneva I, Mathieu M, Ait-Si-Ali S, Robin P, Pritchard LL and Harel-Bellan A . (2001). EMBO Rep., 2, 794–799.

  • Firestein R, Cui X, Huie P and Cleary ML . (2000). Mol. Cell Biol., 20, 4900–4909.

  • Gu W and Roeder RG . (1997). Cell, 90, 595–606.

  • Huang ZJ, Edery I and Rosbash M . (1993). Nature, 364, 259–262.

  • Hung HL, Lau J, Kim AY, Weiss MJ and Blobel GA . (1999). Mol. Cell. Biol., 19, 3496–3505.

  • Imhof A, Yang XY, Ogryzko VV, Nakatani Y, Wolffe AP and Ge H . (1997). Curr. Biol., 7, 689–692.

  • Kitabayashi I, Aikawa Y, Nguyen LA, Yokoyama A and Ohki M . (2001). EMBO J., 20, 7184–7196.

  • Kitabayashi I, Yokoyama A, Shimizu K and Ohki M . (1998). EMBO J., 11, 2994–3004.

  • Lachner M, O'Carroll D, Rea S, Mechtler K and Jenuwein T . (2001). Nature, 410, 116–120.

  • Maison C, Bailly D, Peters AH, Quivy JP, Roche D, Taddei A, Lachner M, Jenuwein T and Almouzni G . (2002). Nat. Genet., 30, 329–334.

  • Martinez-Balbas MA, Bauer UM, Nielsen SJ, Brehm A and Kouzarides T . (2000). EMBO J., 19, 662–671.

  • Marzio G, Wagener C, Gutierrez MI, Cartwright P, Helin K and Giacca M . (2000). J. Biol.Chem., 275, 10887–10892.

  • McNeil S, Zeng C, Harrington KS, Hiebert S, Lian JB, Stein JL, van Wijnen A and Stein GS . (1999). Proc. Natl. Acad. Sci. USA, 96, 14882–14887.

  • Michaud J, Wu F, Osato M, Cottles GM, Yanagida M, Asou N, Shigesada K, Ito Y, Benson KF, Raskind WH, Rossier C, Antonarakis SE, Israels S, McNicol A, Weiss H, Horwitz M and Scott HS . (2002). Blood, 99, 1364–1372.

  • Mikhail FM, Serry KA, Hatem N, Mourad ZI, Farawela HM, El Kaffash DM, Coignet L and Nucifora G . (2002). Leukemia, 16, 658–668.

  • Miyoshi H, Kozu T, Shimizu K, Enomoto K, Maseki N, Kaneko Y, Kamada N and Ohki M . (1993). EMBO J., 12, 2715–2721.

  • Noma K, Allis CD and Grewal SI . (2001). Science, 293, 1150–1155.

  • Okuda T, van Deursen J, Hiebert SW, Grosveld G and Downing JR . (1996). Cell, 84, 321–330.

  • Osato M, Yanagida M, Shigesada K and Ito Y . (2001). Int. J. Hematol., 74, 245–251.

  • Peters AH, Mermoud JE, O'Carroll D, Pagani M, Schweizer D, Brockdorff N and Jenuwein T . (2002). Nat. Genet., 30, 77–80.

  • Peters AH, O'Carroll D, Scherthan H, Mechtler K, Sauer S, Schofer C, Weipoltshammer K, Pagani M, Lachner M, Kohlmaier A, Opravil S, Doyle M, Sibilia M and Jenuwein T . (2001). Cell, 107, 323–337.

  • Polanowska J, Fabbrizio E, Le Cam L, Trouche D, Emiliani S, Herrera R and Sardet C . (2001). Oncogene, 20, 4115–4127.

  • Rea S, Eisenhaber F, O'Carroll D, Strahl BD, Sun ZW, Schmid M, Opravil S, Mechtler K, Ponting CP, Allis CD and Jenuwein T . (2000). Nature, 406, 593–599.

  • Rhoades KL, Hetherington CJ, Rowley JD, Hiebert SW, Nucifora G, Tenen DG and Zhang DE . (1996). Proc. Natl. Acad. Sci. USA, 93, 11895–11900.

  • Sewalt RG, Lachner M, Vargas M, Hamer K, den Blaauwen JL, Hendrix T, Melcher M, Schweizer D, Jenuwein T and Otte AP . (2002). Mol. Cell. Biol., 22, 5539–5553.

  • Speck NA and Gilliland DG . (2002). Nat. Rev. Cancer, 2, 502–513.

  • Vandel L, Nicolas E, Vaute O, Ferreira R, Ait-Si-Ali S and Trouche D . (2001). Mol. Cell. Biol., 21, 6484–6494.

  • Vaute O, Nicolas E, Vandel L and Trouche D . (2002). Nucleic Acid Res., 30, 475–481.

  • Wang C, Fu M, Mani S, Wadler S, Senderowicz AM and Pestell RG . (2001). Front. Biosci., 6, 610–629.

  • Wang Q, Stacy T, Binder M, Marin-Padilla M, Sharpe AH and Speck NA . (1996). Proc. Natl. Acad. Sci. USA, 93, 3444–3449.

  • Yamamoto K and Sonoda M . (2003). Biochem. Biophys. Res. Commun., 301, 287–292.

  • Zhang W and Bieker JJ . (1998). Proc. Natl. Acad. Sci. USA, 95, 9855–9860.

  • Zhang Q, Yao H, Vo N and Goodman RH . (2000). Proc. Natl. Acad. Sci. USA, 97, 14323–14328.

Download references

Acknowledgements

We thank Dr T Jenuwein, Austria for the (Myc)3-SUV39H1 construct. This work was supported by NIH-NCI Grants CA72675 and CA96448 (GN). GN is a scholar of the Leukemia and Lymphoma Society.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giuseppina Nucifora.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chakraborty, S., Sinha, K., Senyuk, V. et al. SUV39H1 interacts with AML1 and abrogates AML1 transactivity. AML1 is methylated in vivo. Oncogene 22, 5229–5237 (2003). https://doi.org/10.1038/sj.onc.1206600

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206600

Keywords

This article is cited by

Search

Quick links