Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Differential regulation of TGF-β signaling through Smad2, Smad3 and Smad4

Abstract

Smad transcription factors mediate the growth inhibitory effect of transforming growth factor-β (TGF-β) in many cell types. Mutational inactivation of Smads has been correlated with loss of responsiveness to TGF-β-mediated signal transduction. In this study, we compare the contribution of individual Smads to TGF-β-induced growth inhibition and endogenous gene expression in isogenic cellular backgrounds. Smad2, Smad3 and Smad4 expression were selectively inhibited in differentiation-competent cells by using improved antisense molecules. We found that TGF-β mediates its inhibitory effect on HaCaT keratinocyte cell growth predominantly through Smad3. Inhibition of Smad3 expression was sufficient to interfere with TGF-β-induced cell cycle arrest and to induce or suppress endogenous cell cycle regulators. Inhibition of Smad4 expression exhibited a partial effect, whereas inhibition of Smad2 expression had no effect. By gene expression profiling, we identified TGF-β-dependent genes that are differentially regulated by Smad2 and Smad3 under regular growth conditions on a genome-wide scale. We show that Smad2, Smad3 and Smad4 contribute to the regulation of TGF-β responses to varying extents, and demonstrate, in addition, that these Smads exhibit distinct roles in different cell types.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 6
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ashcroft GS, Yang X, Click AB, Weinstein M, Letterio JL, Mizel DE, Anzano M, Greenwell-Wild T, Wahl SM, Deng C and Roberts AB . (1999). Nat. Cell. Biol., 1, 260–266.

  • Attisano L and Wrana JL . (2000). Curr. Opin. Cell Biol., 12, 235–243.

  • Attisano L and Wrana JL . (2002). Science, 296, 1646–1647.

  • Basolo F, Fiore L, Ciardiello F, Calvo S, Fontanini G, Conaldi PG and Toniolo A . (1994). Int. J. Cancer, 56, 736–742.

  • Blaschke RJ, Hewlett AR, Desprez PY, Petersen OW and Bissell MJ . (1994). Methods Enzymol., 245, 535–556.

  • Boukamp P, Petrussevska RT, Breitkreutz D, Hornung J, Markham A and Fusenig NE . (1988). J. Cell Biol., 106, 761–771.

  • Cerezo A, Kalthoff H, Schuermann M, Schafer B and Boukamp P . (2002). J. Cell. Sci., 115, 1305–1312.

  • Chacko BM, Qin B, Correia JJ, Lam SS, de Caestecker MP and Lin K . (2001). Nat. Struct. Biol., 8, 248–253.

  • Chen CR, Kang Y and Massague J . (2001). Proc. Natl. Acad. Sci. USA, 98, 992–999.

  • Chen CR, Kang Y, Siegel PM and Massague J . (2002). Cell, 110, 19–32.

  • Claassen GF and Hann SR . (2000). Proc. Natl. Acad. Sci. USA, 97, 9498–9503.

  • Correia JJ, Chacko BM, Lam SS and Lin K . (2001). Biochemistry, 40, 1473–1482.

  • Datto MB, Frederick JP, Pan L, Borton AJ, Zhuang Y and Wang XF . (1999). Mol. Cell. Biol., 19, 2495–2504.

  • Derynck R and Feng XH . (1997). Biochim. Biophys. Acta, 1333, F105–150.

  • Feng XH, Liang YY, Liang M, Zhai W and Lin X . (2002). Mol. Cell, 9, 133–143.

  • Fritz HJ, Belagaje R, Brown EL, Fritz RH, Jones RA, Lees RG and Khorana HG . (1978). Biochemistry, 17, 1257–1267.

  • Game SM, Huelsen A, Patel V, Donnelly M, Yeudall WA, Stone A, Fusenig NE and Prime SS . (1992). Int. J. Cancer, 52, 461–470.

  • George MD, Vollberg TM, Floyd EE, Stein JP and Jetten AM . (1990). J. Biol. Chem., 265, 11098–11104.

  • Gill G and Ptashne M . (1988). Nature, 334, 721–724.

  • Hanahan D and Weinberg RA . (2000). Cell, 100, 57–70.

  • Hill CS . (1999). Int. J. Biochem. Cell Biol., 31, 1249–1254.

  • Hill-Kapturczak N, Truong L, Thamilselvan V, Visner GA, Nick HS and Agarwal A . (2000). J. Biol. Chem., 275, 40904–40909.

  • Iavarone A and Massague J . (1997). Nature, 387, 417–422.

  • Inman GJ and Hill CS . (2002). J. Biol. Chem., 277, 51008–51016.

  • Jayaraman L and Massague J . (2000). J. Biol. Chem., 275, 40710–40717.

  • Klippel A, Escobedo JA, Hirano M and Williams LT . (1994). Mol. Cell. Biol., 14, 2675–2685.

  • Lasorella A, Noseda M, Beyna M, Yokota Y and Iavarone A . (2000). Nature, 407, 592–598.

  • Ling MT, Wang X, Tsao SW and Wong YC . (2002). Biochim. Biophys. Acta, 1570, 145–152.

  • Massague J . (2000). Nat. Rev. Mol. Cell. Biol., 1, 169–178.

  • Massague J and Wotton D . (2000). EMBO J., 19, 1745–1754.

  • Moustakas A and Heldin CH . (2002). Genes Dev., 16, 1867–1871.

  • Moustakas A, Souchelnytskyi S and Heldin CH . (2001). J. Cell. Sci., 114, 4359–4369.

  • Nakao A, Imamura T, Souchelnytskyi S, Kawabata M, Ishisaki A, Oeda E, Tamaki K, Hanai J, Heldin CH, Miyazono K and ten Dijke P . (1997). EMBO J., 16, 5353–5362.

  • Nicolas FJ, Lehmann K, Warne PH, Hill CS and Downward J . (2003). J. Biol. Chem., 278, 3251–3256.

  • Nomura M and Li E . (1998). Nature, 393, 786–790.

  • Piek E, Heldin CH and Ten Dijke P . (1999). FASEB J., 13, 2105–2124.

  • Piek E, Ju WJ, Heyer J, Escalante-Alcalde D, Stewart CL, Weinstein M, Deng C, Kucherlapati R, Bottinger EP and Roberts AB . (2001). J. Biol. Chem., 276, 19945–19953.

  • Pietenpol JA, Holt JT, Stein RW and Moses HL . (1990). Proc. Natl. Acad. Sci. USA, 87, 3758–3762.

  • Qin BY, Lam SS, Correia JJ and Lin K . (2002). Genes Dev, 16, 1950–1963.

  • Roberts AB . (1999). Microbes. Infect., 1, 1265–1273.

  • Roberts AB and Derynck R . (2001). Sci. STKE, 2001, PE43.

  • Schoop VM, Mirancea N and Fusenig NE . (1999). J. Invest. Dermatol., 112, 343–353.

  • Seoane J, Pouponnot C, Staller P, Schader M, Eilers M and Massague J . (2001). Nat. Cell Biol., 3, 400–408.

  • Sirard C, de la Pompa JL, Elia A, Itie A, Mirtsos C, Cheung A, Hahn S, Wakeham A, Schwartz L, Kern SE, Rossant J and Mak TW . (1998). Genes Dev., 12, 107–119.

  • Sirard C, Kim S, Mirtsos C, Tadich P, Hoodless PA, Itie A, Maxson R, Wrana JL and Mak TW . (2000). J. Biol. Chem., 275, 2063–2070.

  • Soule HD, Maloney TM, Wolman SR, Peterson WD, Jr, Brenz R, McGrath CM, Russo J, Pauley RJ, Jones RF and Brooks SC . (1990). Cancer Res., 50, 6075–6086.

  • Staller P, Peukert K, Kiermaier A, Seoane J, Lukas J, Karsunky H, Moroy T, Bartek J, Massague J, Hanel F and Eilers M . (2001). Nat. Cell. Biol., 3, 392–399.

  • Sternberger M, Schmiedeknecht A, Kretschmer A, Gebhardt F, Leenders F, Czauderna F, Von Carlowitz I, Engle M, Giese K, Beigelman L and Klippel A . (2002). Antisense Nucleic Acid Drug Dev., 12, 131–143.

  • Wakefield LM and Roberts AB . (2002). Curr. Opin. Genet. Dev., 12, 22–29.

  • Waldrip WR, Bikoff EK, Hoodless PA, Wrana JL and Robertson EJ . (1998). Cell, 92, 797–808.

  • Warner BJ, Blain SW, Seoane J and Massague J . (1999). Mol. Cell. Biol., 19, 5913–5922.

  • Weinstein M, Yang X and Deng C . (2000). Cytokine Growth Factor Rev., 11, 49–58.

  • Weinstein M, Yang X, Li C, Xu X, Gotay J and Deng CX . (1998). Proc. Natl. Acad. Sci. USA, 95, 9378–9383.

  • Werner S and Munz B . (2000). Exp. Cell Res., 254, 80–90.

  • Wrana JL . (2000). Sci. STKE, 2000, RE1.

  • Wrana JL and Attisano L . (2000). Cytokine Growth Factor Rev., 11, 5–13.

  • Wu JW, Fairman R, Penry J and Shi Y . (2001). J. Biol. Chem., 276, 20688–20694.

  • Xu G, Chakraborty C and Lala PK . (2001). Biochem. Biophys. Res. Commun., 287, 47–55.

  • Xu G, Chakraborty C and Lala PK . (2003). Biochem. Biophys. Res. Commun., 300, 383–390.

  • Yang X, Letterio JJ, Lechleider RJ, Chen L, Hayman R, Gu H, Roberts AB and Deng C . (1999). EMBO J., 18, 1280–1291.

  • Zavadil J, Bitzer M, Liang D, Yang YC, Massimi A, Kneitz S, Pick E and Bottinger EP . (2001). Proc. Natl. Acad. Sci. USA, 98, 6686–6691.

  • Zhang Y and Derynck R . (1999). Trends Cell Biol., 9, 274–279.

Download references

Acknowledgements

We thank Petra Boukamp for providing the HaCaT keratinocyte cell line. We are grateful to Oliver Keil for preparing transfection vehicles. We thank Carmen Gruber, Mike Ziegner and Frank Tiemann for help with the flow cytometer. We thank Mike Engle, Ralf Saegebarth and Steve Lack for expert bioinformatic support. We are grateful to Klaus Giese, Frank Gebhardt, Frauke Leenders and especially Bert Pronk and Lisa Molz for critically reading the manuscript. This study was supported by a grant from the Bundesministerium für Forschung und Technologie (No. 0311830/9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anke Klippel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kretschmer, A., Moepert, K., Dames, S. et al. Differential regulation of TGF-β signaling through Smad2, Smad3 and Smad4. Oncogene 22, 6748–6763 (2003). https://doi.org/10.1038/sj.onc.1206791

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206791

Keywords

This article is cited by

Search

Quick links