Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

PARP-1 binds E2F-1 independently of its DNA binding and catalytic domains, and acts as a novel coactivator of E2F-1-mediated transcription during re-entry of quiescent cells into S phase

Abstract

The transcription factor E2F-1 is implicated in the activation of S-phase genes as well as induction of apoptosis, and is regulated by interactions with Rb and by cell cycle-dependent alterations in E2F-1 abundance. We earlier demonstrated a pivotal role for poly(ADP-ribose) polymerase-1 (PARP-1) in the regulation of E2F-1 expression and promoter activity during S-phase re-entry when quiescent cells re-enter the cell cycle. We now investigate the putative mechanism(s) by which PARP-1 may upregulate E2F-1 promoter activity during S-phase re-entry. DNase-1 footprint assays with purified PARP-1 showed that PARP-1 did not directly bind the E2F-1 promoter in a sequence-specific manner. In contrast to p53, a positive acceptor in poly(ADP-ribosyl)ation reactions, E2F-1 was not poly(ADP-ribosyl)ated by wild-type PARP-1 in vitro, indicating that PARP-1 does not exert a dual effect on E2F-1 transcriptional activation. Protein-binding reactions and coimmunoprecipitation experiments with purified PARP-1 and E2F-1, however, revealed that PARP-1 binds to E2F-1 in vitro. More significantly, physical association of PARP-1 and E2F-1 in vivo also occurred in wild-type fibroblasts 5 h after re-entry into S phase, coincident with the increase in E2F-1 promoter activity and expression of E2F-1-responsive S-phase genes cyclin A and c-Myc. Mapping of the interaction domains revealed that full-length PARP-1 as well as PARP-1 mutants lacking either the catalytic active site or the DNA-binding domain equally bind E2F-1, whereas a PARP-1 mutant lacking the automodification domain does not, suggesting that the protein interaction site is located in this central domain. Finally, gel shift analysis with end-blocked E2F-1 promoter sequence probes verified that the binding of PARP-1 to E2F-1 enhances binding to the E2F-1 promoter, indicating that PARP-1 acts as a positive cofactor of E2F-1-mediated transcription.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Abbreviations

DMEM:

Dulbecco's modified Eagle's medium

FBS:

fetal bovine serum

MRC:

multiprotein DNA replication complex

PARP:

poly(ADP-ribose) polymerase

PAR:

poly(ADP-ribose)

PBS:

phosphate-buffered saline

PCNA:

proliferating-cell nuclear antigen

pol:

DNA polymerase

RFC:

replication factor C

RPA:

replication protein A

BRCT:

breast cancer susceptibility protein C-terminus

References

  • Akiyama T, Takasawa S, Nata K, Kobayashi S, Abe M, Shervani N, Ikeda T, Nakagawa K, Unno M, Matsuno S and Okamoto H . (2001). Proc. Natl. Acad. Sci. USA, 98, 48–53.

  • Alkhatib HM, Chen DF, Cherney B, Bhatia K, Notario V, Giri C, Stein G, Slattery E, Roeder RG and Smulson ME . (1987). Proc. Natl. Acad. Sci. USA, 84, 1224–1228.

  • Ame J, Rolli V, Schreiber V, Niedergang C, Apiou F, Decker P, Muller S, Hoger T, de Murcia J and de Murcia G . (1999). J. Biol. Chem., 274, 17860–17868.

  • Anderson M, Scoggin K, Simbulan-Rosenthal C and Steadman J . (2000). J. Virol., 74, 2169–2177.

  • Blake M and Azizkhan J . (1989). Mol. Cell. Biol., 9, 4994–5002.

  • Buki K, Bauer P, Hakam A and Kun E . (1995). J. Biol. Chem., 270, 3370–3377.

  • Butler A and Ordahl C . (1999). Mol. Cell. Biol., 19, 296–306.

  • Cervellera M and Sala A . (2000). J. Biol. Chem., 275, 10692–10696.

  • Cherney BW, McBride OW, Chen DF, Alkhatib H, Bhatia K, Hensley P and Smulson ME . (1987). Proc. Natl. Acad. Sci. USA, 84, 8370–8374.

  • Critchlow S, Bowater R and Jackson S . (1997). Curr. Biol., 7, 588–598.

  • de Capoa A, Febbo F, Giovanelli F, Niveleau A, Zardo G, Marenzi S and Caiafa P . (1999). FASEB J., 13, 89–93.

  • DeGregori J, Leone G, Miron A, Jakoi L and Nevins J . (1997). Proc. Natl. Acad. Sci. USA, 94, 7245–7250.

  • Desmarais Y, Menard L, Lagueux J and Poirier GG . (1991). Biochim. Biophys. Acta, 1078, 179–186.

  • Furuno N, den Elzen N and Pines J . (1999). J. Cell Biol., 147, 295–306.

  • Galande S and Kowhi-Shigematsu T . (1999). J. Biol. Chem., 274, 20521–20528.

  • Ha H, Hester L and Snyder S . (2002). Proc. Natl. Acad. Sci. USA, 99, 3270–3275.

  • Hassa P, Covic M, Hasan S, Imhof R and Hottiger M . (2001). J. Biol. Chem., 276, 45588–45597.

  • Hassa P and Hottiger M . (1999). Biol. Chem., 380, 953–959.

  • Johansson M . (1999). Genomics, 57, 442–445.

  • Johnson D, Cress W, Jakoi L and Nevins J . (1994a). Proc. Natl. Acad. Sci. USA, 91, 12823–12827.

  • Johnson D, Ohtani K and Nevins J . (1994b). Genes & Dev., 8, 1514–1525.

  • Johnson D, Schwaz J, Cress W and Nevins J . (1993). Nature, 365, 349–352.

  • Kannan P, Yu Y, Wankhade S and Tainsky M . (1999). Nucleic Acids Res., 27, 866–874.

  • Kawaichi M, Ueda K and Hayaishi O . (1981). J. Biol. Chem., 256, 9483–9489.

  • Kawamitsu H, Hoshino H, Okada H, Miwa M, Momoi H and Sugimura T . (1984). Biochemistry, 23, 3771–3777.

  • Kickhoefer V, Siva A, Kedersha N, Inman E, Ruland C, Streuli M and Rome L . (1999). J. Cell. Biol., 146, 917–928.

  • Kim H, Jacobson M, Rolli V, Menissier-de Murcia J, Reinbolt J, Simonin F, Ruf A, Schulz G and de Murcia G . (1997). Biochem. J., 322, 469–475.

  • Knudsen E and Wang J . (1997). Mol. Cell. Biol., 17, 5771–5783.

  • Lam E, Bennett J and Watson R . (1995). Gene, 160, 277–281.

  • Lee D, Kim J, Kim K, Joe C, Schrieber V, Menissier-de Murcia J and Choe J . (2002). Oncogene, 21, 5877–5885.

  • Marzio G, Wagener C, Gutierrez M, Cartwright P, Helin K and Giacca M . (2000). J. Biol. Chem., 275, 10887–10892.

  • Masson M, Niedergang C, Schreiber V, Muller S, Menissier-de Murcia J and de Murcia G . (1998). Mol. Cell. Biol., 18, 3563–3571.

  • Meisterernst M, Stelzer G and Roeder R . (1997). Proc. Natl. Acad. Sci. USA, 94, 2261–2265.

  • Menissier-de Murcia J, Molinete M, Gradwohl G and de Murcia G . (1989). J. Mol. Biol., 210, 229–233.

  • Nashh R, Caldecott K, Barnes D and Lindahl T . (1997). Biochemistry, 36, 5207–5211.

  • Neuman E, Flemington E, Sellers W and Kaelin W . (1994). Mol. Cell. Biol., 14, 6607–6615.

  • Nevins J . (1992). Science, 258, 424–429.

  • Nie J, Sakamoto S, Song D, Qu Z, Ota K and Taniguchi T . (1998). FEBS Lett., 424, 27–32.

  • Nirodi C, NagDas S, Gygi S, Olson G, Aebersold R and Richmond A . (2001). J. Biol. Chem., 276, 9366–9374.

  • Oei S, Griesenbeck J, Schweiger M and Ziegler M . (1998). J. Biol. Chem., 273, 31644–31647.

  • Oliver F, Mennisier-de Murcia J, Nacci C, Decker P, Andriantsitohaina R, Muller S, de la Rubia G, Stoclet J and de Murcia G . (1999). EMBO J., 18, 4446–4454.

  • Pagano M, Peperkok R, Verde F, Ansorge W and Draetta G . (1992). EMBO J., 11, 961–971.

  • Pearson B, Nasheuer H and Wang T . (1991). Mol. Cell. Biol., 11, 2081–2095.

  • Qin X, Livingston D, Kaelin W and Adams P . (1994). Proc. Natl. Acad. Sci. USA, 91, 10918–10922.

  • Rawling J and Alvarez-Gonzalez R . (1997). Biochem. J., 324, 249–253.

  • Rosenthal DS, Ding R, Simbulan-Rosenthal CMG, Cherney B, Vanek P and Smulson ME . (1997). Nucleic Acids Res., 25, 1437–1441.

  • Shan B, Farmer A and Lee W . (1996). Cell Growth Differ., 7, 689–697.

  • Shieh WM, Ame JC, Wilson M, Wang ZQ, Koh D, Jacobson M and Jacobson E . (1998). J. Biol. Chem., 273, 30069–30072.

  • Simbulan-Rosenthal C, Rosenthal D, Luo R, Samara R, Jung M, Dristchilo A, Spoonde A and Smulson M . (2001). Neoplasia, 3, 179–188.

  • Simbulan-Rosenthal C, Rosenthal D, Luo R and Smulson ME . (1999a). Oncogene, 18, 5015–5023.

  • Simbulan-Rosenthal CM, Ly DH, Rosenthal DS, Konopka G, Luo R, Wang Z-Q, Schultz P and Smulson M . (2000). Proc. Natl. Acad. Sci. USA, 97, 11274–11279.

  • Simbulan-Rosenthal CM, Rosenthal DS, Boulares AH, Hickey RJ, Malkas LH, Coll JM and Smulson ME . (1998a). Biochemistry, 37, 9363–9370.

  • Simbulan-Rosenthal CM, Rosenthal DS, Iyer S, Boulares AH and Smulson ME . (1998b). J. Biol. Chem., 273, 13703–13712.

  • Simbulan-Rosenthal CM, Rosenthal DS, Luo R and Smulson ME . (1999b). Cancer Res., 59, 2190–2194.

  • Simbulan-Rosenthal CMG, Rosenthal DS, Hilz H, Hickey R, Malkas L, Applegren N, Wu Y, Bers G and Smulson M . (1996). Biochemistry, 35, 11622–11633.

  • Slansky J, Li Y, Kaelin W and Farnham P . (1993). Mol. Cell. Biol., 13, 1610–1618.

  • Smith S, Giriat I, Schmitt A and de Lange T . (1998). Science, 282, 1395–1397.

  • Smulson ME, Pang D, Jung M, Dimtchev A, Chasovskikh S, Spoonde A, Simbulan-Rosenthal C, Rosenthal D, Yakovlev A and Dritschilo A . (1998). Cancer Res., 58, 3495–3498.

  • Tang A, Wu K, Hashimoto T, Liu W, Takahashi R, Shi X, Mihara K, Zhang F, Chen Y and Du C . (1989). Oncogene, 4, 401–407.

  • van den Heuvel S and Harlow E . (1993). Science, 262, 2050–2054.

  • Wang ZQ, Auer B, Stingl L, Berghammer H, Haidacher D, Schweiger M and Wagner EF . (1995). Genes Dev., 9, 509–520.

  • Weinberg R . (1995). Cell, 81, 323–330.

  • Wesierska-Gadek J, Wojciechowski J and Schmid G . (2003). J. Cell. Biochem., 89, 220–232.

  • Yamane K, Katayama E and Tsuruo T . (2001). Oncogene, 20, 2859–2867.

  • Zhang Z, Hildebrandt E, Simbulan-Rosenthal C and Anderson M . (2002). Virology, 296, 107–116.

Download references

Acknowledgements

We thank Dr ZQ Wang (IARC, Lyon, France) for the immortalized wild-type and PARP-1−/− cells, Dr Alexander Spoonde for the recombinant wild-type and mutant PARP-1. This work was supported by grants (CA25344 and PO1 CA74175) to MES from the National Cancer Institute, the US Air Force Office of Scientific Research (AFOSR-89-0053) to MES, and the US Army Medical Research and Development Command contract DAMD17-90-C-0053 to MES and DAMD17-00-C-0026 to DSR.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cynthia M Simbulan-Rosenthal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Simbulan-Rosenthal, C., Rosenthal, D., Luo, R. et al. PARP-1 binds E2F-1 independently of its DNA binding and catalytic domains, and acts as a novel coactivator of E2F-1-mediated transcription during re-entry of quiescent cells into S phase. Oncogene 22, 8460–8471 (2003). https://doi.org/10.1038/sj.onc.1206897

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206897

Keywords

This article is cited by

Search

Quick links