Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Transfection of a dominant-negative mutant NF-kB inhibitor (IkBm) represses p53-dependent apoptosis in acute lymphoblastic leukemia cells: interaction of IkBm and p53

Abstract

To investigate the possible role of inhibiting NF-kB activation in sensitizing tumor cells to chemotherapy-induced apoptosis, we transfected the dominant-negative mutant inhibitor of NF-kB (IkBm) into the EU-1 cell line, an acute lymphoblastic leukemia (ALL) line with constitutive NF-kB activation. Overexpression of IkBm significantly reduced constitutive NF-kB activity in EU-1 cells, resulting in decreased cell growth. In response to apoptosis induced by chemotherapeutic drugs, IkBm-transfected cells (EU-1/IkBm) exhibited increased sensitivity to vincristine (VCR), whereas sensitivity to doxorubicin (Dox) was not changed as compared to neo-transfected control (EU-1/neo) cells. To further evaluate the link between IkBm and sensitivity to Dox and VCR, we demonstrated that both endogenous IkBα and ectopic IkBm bind to p53. In response to Dox, the cytosolic p53.IkBα complex rapidly dissociated due to downregulation of IkBα. However, the p53.IkBm complex did not dissociate under these conditions. Although treatment of EU-1/IkBm cells with Dox increased the expression of p53, the nondissociating p53.IkBm complex resulted in decreased p53 function, as demonstrated by absence of cell-cycle arrest and induction of p53 target genes. Contrastingly, VCR-induced cell death neither downregulated IkBα nor induced p53, as shown by the lack of NF-kB activation and p53-mediated gene expression in VCR-treated cells. Our data suggest that IkBm simultaneously downregulates NF-kB activation and sequesters p53 in the cytoplasm, thus enhancing NF-kB-regulated apoptosis but blocking p53-dependent apoptosis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4

Similar content being viewed by others

References

  • Arlt A, Vorndamm J, Breitenbroich M, Folsch UR, Kalthoff H, Schmidt WE and Schafer H . (2001). Oncogene, 20, 859–868.

  • Baeuerle PA and Baltimore D . (1988). Science, 242, 540–546.

  • Baichwal VR and Baeuerle PA . (1997). Curr. Biol., 7, R94–R96.

  • Bargou RC, Emmerich F, Krappmann D, Bommert K, Mapara MY, Arnold W, Royer HD, Grinstein E, Greiner A, Scheidereit C and Dorken B . (1997). J. Clin. Invest., 100, 2961–2969.

  • Bargou RC, Leng C, Krappmann D, Emmerich F, Mapara MY, Bommert K, Royer HD, Scheidereit C and Dorken B . (1996). Blood, 87, 4340–4347.

  • Bentires-Alj M, Hellin AC, Ameyar M, Chouaib S, Merville MP and Bours V . (1999). Cancer Res., 59, 811–815.

  • Chandra J, Niemer I, Gilbreath J, Kliche KO, Andreeff M, Freireich EJ, Keating M and McConkey DJ . (1998). Blood, 92, 4220–4229.

  • Chang NS . (2002). J. Biol. Chem., 277, 10323–10331.

  • Conway RM, Madigan MC, Billson FA and Penfold PL . (1998). Eur. J. Cancer, 34, 1741–1748.

  • Doerre S and Corley RB . (1999). J. Immun., 163, 269–277.

  • Dong QG, Sclabas GM, Fujioka S, Schmidt C, Peng B, Wu T, Tsao MS, Evans DB, Abbruzzese JL, McDonnell TJ and Chiao PJ . (2002). Oncogene, 21, 6510–6519.

  • Findley HW, Gu L, Yeager AM and Zhou M . (1997). Blood, 89, 2986–2993.

  • Garg A and Aggarwal BB . (2002). Leukemia, 16, 1053–1068.

  • Giri DK and Aggarwal BB . (1998). J. Biol. Chem., 273, 14008–14014.

  • Groninger E, De Graaf SSN, Meeuwsen-De Boer GJ, Sluiter WJ and Poppema AS . (2000). Br. J. Haematol., 111, 875–878.

  • Gugasyan R, Grumont R, Grossmann M, Nakamura Y, Pohl T, Nesic D and Gerondakis S . (2000). Immunol. Rev., 176, 134–140.

  • Guzman ML, Neering SJ, Upchurch D, Grimes B, Howard DS, Rizzieri DA, Luger SM and Jordan CT . (2002). Blood, 98, 2301–2307.

  • Hwang S and Ding A . (1995). Cancer Biochem. Biophys., 14, 265–272.

  • Jeremias I, Kupatt C, Baumann B, Herr I, Wirth T and Debatin KM . (1998). Blood, 91, 4624–4631.

  • Jordan MA, Thrower D and Wilson L . (1991). Cancer Res., 51, 2212–2222.

  • Kawai H, Yamada Y, Tatsuka M, Niwa O, Yamamoto K and Suzuki F . (1999). Cancer Res., 59, 6038–6041.

  • Kordes U, Krappmann D, Heissmeyer V, Ludwig WD and Scheidereit C . (2000). Leukemia, 14, 399–402.

  • Krappmann D, Emmerich F, Kordes U, Scharschmidt E, Dorken B and Scheidereit C . (1999). Oncogene, 18, 943–953.

  • Lorenzo E, Ruiz-Ruiz C, Quesada AJ, Hernandez G, Rodriguez A, Lopez-Rivas A and Redondo JM . (2002). J. Biol. Chem., 277, 10883–10892.

  • Miyamoto S, Chiao PJ and Verma IM . (1994). Mol. Cell Biol., 14, 3276–3282.

  • Nakshatri H, Bhat-Nakshatri P, Martin DA, Goulet Jr RJ and Sledge Jr GW . (1997). Mol. Cell Biol., 17, 3629–3639.

  • Orlowski RZ, Eswara JR, Lafond-Walker A, Grever MR, Orlowski M and Dang CV . (1998). Cancer Res., 58, 4342–4348.

  • Post A, Holsboer F and Behl C . (1989). J. Neurosci., 18, 8236–8246.

  • Reed MA, Whitley MZ, Gupta S, Pierce JW, Best J, Davis RJ and Collins T . (1997). J. Biol. Chem., 272, 2753–2761.

  • Ryan KM, Ernst MK, Rice NR and Vousden KH . (2000). Nature, 404, 892–897.

  • Schauer SL, Bellas RE and Sonenshein GE . (1998). J. Immunol., 160, 4398–4405.

  • Schreiber E, Mattias P, Muller MM and Schaffner W . (1989). Nucleic Acids Res., 17, 6419.

  • Shattuck-Brandt RL and Richmond A . (1997). Cancer Res., 57, 3032–3039.

  • Siebenlist U, Franzoso G and Brown K . (1994). Annu. Rev. Cell Biol., 10, 405–455.

  • Sonenshein GE . (1997). Semin. Cancer Biol., 8, 113–119.

  • Traenckner EBM, Pahl HL, Henkel T, Schmidt KN, Wilk S and Baeuerle PA . (1995). EMBO J., 14, 2876–2883.

  • Turpin P, Hay RT and Dargemont C . (1999). J. Biol. Chem., 274, 6804–6812.

  • Van Antwerp DJ, Martin SJ, Kafri T, Green DR and Verma IM . (1996). Science, 274, 787–789.

  • Wadgaonkar R, Phelps KM, Haque Z, Williams AJ, Silverman ES and Collins T . (1999). J. Biol. Chem., 274, 1879–1882.

  • Wang CY, Cusack Jr JC, Liu R and Baldwin Jr AS . (1999a). Nat. Med., 5, 412–417.

  • Wang CY, Guttridge DC, Mayo MW and Baldwin Jr AS . (1999b). Mol. Cell Biol., 19, 5923–5929.

  • Wang CY, Mayo MW and Baldwin Jr AS . (1996). Science, 274, 784–787.

  • Webster GA and Perkins ND . (1999). Mol. Cell Biol., 19, 3485–3495.

  • Wu H and Lozano G . (1994). J. Biol. Chem., 269, 20067–20074.

  • Zhou M, Zaki SR, Ragab AH and Findley HW . (1994). Leukemia, 8, 659–663.

Download references

Acknowledgements

This work was supported by grants from the NCI-NIH (R01 CA82323), CURE Childhood Cancer, Inc. and Children's Healthcare of Atlanta.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muxiang Zhou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhou, M., Gu, L., Zhu, N. et al. Transfection of a dominant-negative mutant NF-kB inhibitor (IkBm) represses p53-dependent apoptosis in acute lymphoblastic leukemia cells: interaction of IkBm and p53. Oncogene 22, 8137–8144 (2003). https://doi.org/10.1038/sj.onc.1206911

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1206911

Keywords

This article is cited by

Search

Quick links