Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

Regulation of TGFβ1-mediated growth inhibition and apoptosis by RUNX2 isoforms in endothelial cells

Abstract

Runx transcription factors regulate viral growth, hematopoiesis, bone formation, angiogenesis, and gastric epithelial development through specific DNA-binding motifs on target gene promoters. Vascular endothelial cells (ECs) express RUNX genes that are activated by angiogenic factors. The RUNX2 gene also activates the vascular endothelial growth factor promoter. Alternatively spliced forms of RUNX genes have been described, but their functions in angiogenesis have not been elucidated. In this study, expression of a novel alternatively spliced variant of RUNX2 (RUNX2Δ8), lacking the region encoded by exon 8, was detected in aortic tissue undergoing angiogenesis in vitro and in ECs. Expression of RUNX2 and RUNX2Δ8 increased in vascular sprouts concomitant with expression of cellular proteases and cytokines known to mediate angiogenesis. RUNX2 DNA-binding activity was expressed in proliferating but not quiescent ECs. Ectopic expression of RUNX2 in ECs increased cell sprouting, cell proliferation, DNA synthesis, and phosphorylation of phosphorylated retinoblastoma relative to control transfectants while RUNX2, but not RUNX2Δ8 transfectants, acquired resistance to growth inhibition by transforming growth factor (TGFβ1). Furthermore, RUNX2Δ8-transfected cells were more sensitive to TGFβ1-induced apoptosis than RUNX2 transfectants. Consistent with these data, the RUNX2 gene was a strong repressor of the promoter of the cyclin-dependent kinase inhibitor, p21CIP1, while RUNX2Δ8 was a competitive inhibitor of RUNX2 and exhibited weak repression activity. These results support the hypothesis that ECs regulate growth and apoptosis, in part, by alternative splicing events in the RUNX2 transcription factor to affect the TGFβ1 signaling pathway. The exon 8 domain of RUNX2 may contribute to the strong repression activity of RUNX2 for some target gene promoters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

EC:

endothelial cell

TGFβ1:

transforming growth factor-β

VEGF:

vascular endothelial growth factor

FGF:

fibroblast growth factor

IGF-1:

insulin-like growth factor-1

RHD:

Runt homology domain

uPA:

urokinase plasminogen activator

NF-κB:

nuclear factor-κB

CP:

cyclophilin

MT1-MMP:

membrane-type metalloproteinase-1

EMSA:

electrophoretic mobility-shift assay

BAEC:

bovine aortic endothelial cells

HBME:

human bone marrow endothelial cells. RUNX2 indicates the human gene whereas Runx2 indicates the mouse gene. In reference to general cases, Runx is used

References

  • Alexandrow MG, Kawabata M, Aakre M and Moses HL . (1995). Proc. Natl. Acad. Sci. USA, 92, 3239–3243.

  • Asahara T, Bauters C, Zheng LP, Takeshita S, Bunting S, Ferrara N, Symes JF and Isner JM . (1995). Circulation, 92, II365–II371.

  • Baltzinger M, Mager-Heckel AM and Remy P . (1999). Dev. Dyn., 216, 420–433.

  • Beck Jr L and D'Amore PA . (1997). FASEB J., 11, 365–373.

  • Blyth K, Terry A, Mackay N, Vaillant F, Bell M, Cameron ER, Neil JC and Stewart M . (2001). Oncogene, 20, 295–302.

  • Bravo J, Li Z, Speck NA and Warren AJ . (2001). Nat. Struct. Biol., 8, 371–378.

  • Burchardt M, Burchardt T, Chen MW, Shabsigh A, de la Taille A, Buttyan R and Shabsigh R . (1999). Biol. Reprod., 60, 398–404.

  • Carmeliet P and Collen D . (2000). J. Pathol., 190, 387–405.

  • Claassen GF and Hann SR . (2000). Proc. Natl. Acad. Sci. USA, 97, 9498–9503.

  • Datto MB, Li Y, Panus JF, Howe DJ, Xiong Y and Wang XF . (1995). Proc. Natl. Acad. Sci. USA, 92, 5545–5549.

  • Ducy P, Zhang R, Geoffroy V, Ridall AL and Karsenty G . (1997). Cell, 89, 747–754.

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM, Lin D, Mercer WE, Kinzler KW and Vogelstein B . (1993). Cell, 75, 817–825.

  • Ferrara N . (2000). Recent Prog. Horm. Res., 55, 15–35; discussion 35–6.

  • Flaumenhaft R, Abe M, Mignatti P and Rifkin DB . (1992). J. Cell. Biol., 118, 901–909.

  • Folkman J . (1995). Nat. Med., 1, 27–31.

  • Gartel AL and Tyner AL . (1999). Exp. Cell Res., 246, 280–289.

  • Geoffroy V, Corral DA, Zhou L, Lee B and Karsenty G . (1998). Mamm. Genome, 9, 54–57.

  • Gothie E, Richard DE, Berra E, Pages G and Pouyssegur J . (2000). J. Biol. Chem., 275, 6922–6927.

  • Hanahan D . (1997). Science, 277, 48–50.

  • Hata-Sugi N, Kawase-Kageyama R and Wakabayashi T . (2002). Biol. Pharm. Bull., 25, 446–451.

  • Hiraoka N, Allen E, Apel IJ, Gyetko MR and Weiss SJ . (1998). Cell, 95, 365–377.

  • Huang YQ, Li JJ and Karpatkin S . (2000). Blood, 95, 1993–1999.

  • Ito Y . (1999). Genes Cells, 4, 685–696.

  • Ito Y and Miyazono K . (2003). Curr. Opin. Genet. Dev., 13, 43–47.

  • Jakubowiak A, Pouponnot C, Berguido F, Frank R, Mao S, Massague J and Nimer SD . (2000). J. Biol. Chem., 275, 40282–40287.

  • Kalluri R and Sukhatme VP . (2000). Curr. Opin. Nephrol. Hypertens, 9, 413–418.

  • Kerbel RS . (2000). Carcinogenesis, 21, 505–515.

  • Koff A, Ohtsuki M, Polyak K, Roberts JM and Massague J . (1993). Science, 260, 536–539.

  • Komori T, Yagi H, Nomura S, Yamaguchi A, Sasaki K, Deguchi K, Shimizu Y, Bronson RT, Gao YH, Inada M, Sato M, Okamoto R, Kitamura Y, Yoshiki S and Kishimoto T . (1997). Cell, 89, 755–764.

  • Kriventseva EV, Koch I, Apweiler R, Vingron M, Bork P, Gelfand MS and Sunyaev S . (2003). Trends Genet., 19, 124–128.

  • Laiho M, DeCaprio JA, Ludlow JW, Livingston DM and Massague J . (1990). Cell, 62, 175–185.

  • Lehr JE and Pienta KJ . (1998). J. Natl. Cancer Inst., 90, 118–123.

  • Li WW . (2000). Acad. Radiol., 7, 800–811.

  • Li QL, Ito K, Sakakura C, Fukamachi H, Inoue KI, Chi XZ, Lee KY, Nomura S, Lee CW, Han SB, Kim HM, Kim WJ, Yamamoto H, Yamashita N, Yano T, Ikeda T, Itohara S, Inazawa J, Abe T, Hagiwara A, Yamagishi H, Ooe A, Kaneda A, Sugimura T, Ushijima T, Bae SC and Ito Y . (2002). Cell, 109, 113–124.

  • Linggi B, Muller-Tidow C, van de Locht L, Hu M, Nip J, Serve H, Berdel WE, van der Reijden B, Quelle DE, Rowley JD, Cleveland J, Jansen JH, Pandolfi PP and Hiebert SW . (2002). Nat. Med., 8, 743–750.

  • Lund AH and Van Lohuizen M . (2002). Cancer Cell, 1, 213–215.

  • Lutterbach B, Westendorf JJ, Linggi B, Isaac S, Seto E and Hiebert SW . (2000). J. Biol. Chem., 275, 651–656.

  • Lyons RM and Moses HL . (1990). Eur. J. Biochem., 187, 467–473.

  • Maisonpierre PC, Suri C, Jones PF, Bartunkova S, Wiegand SJ, Radziejewski C, Compton D, McClain J, Aldrich TH, Papadopoulos N, Daly TJ, Davis S, Sato TN and Yancopoulos GD . (1997). Science, 277, 55–60.

  • Massague J and Wotton D . (2000). EMBO J., 19, 1745–1754.

  • Nagata K . (1996). Trends Biochem. Sci., 21, 22–26.

  • Namba K, Abe M, Saito S, Satake M, Ohmoto T, Watanabe T and Sato Y . (2000). Oncogene, 19, 106–114.

  • Newton LK, Yung WK, Pettigrew LC and Steck PA . (1990). Exp. Cell Res., 190, 127–132.

  • Ngo CV, Gee M, Akhtar N, Yu D, Volpert O, Auerbach R and Thomas-Tikhonenko A . (2000). Cell Growth Differ., 11, 201–210.

  • Nicosia RF, Nicosia SV and Smith M . (1994). Am. J. Pathol., 145, 1023–1029.

  • Nicosia RF and Ottinetti A . (1990). Lab. Invest., 63, 115–122.

  • Nicosia RF and Tuszynski GP . (1994). J. Cell. Biol., 124, 183–193.

  • Nor JE, Christensen J, Mooney DJ and Polverini PJ . (1999). Am. J. Pathol., 154, 375–384.

  • Ogawa E, Inuzuka M, Maruyama M, Satake M, Naito-Fujimoto M, Ito Y and Shigesada K . (1993). Virology, 194, 314–331.

  • Otto F, Thornell AP, Crompton T, Denzel A, Gilmour KC, Rosewell IR, Stamp GW, Beddington RS, Mundlos S, Olsen BR, Selby PB and Owen MJ . (1997). Cell, 89, 765–771.

  • Pepper MS, Belin D, Montesano R, Orci L and Vassalli JD . (1990). J. Cell. Biol., 111, 743–755.

  • Perry C, Sklan EH, Birikh K, Shapira M, Trejo L, Eldor A and Soreq H . (2002). Oncogene, 21, 8428–8441.

  • Pollman MJ, Naumovski L and Gibbons GH . (1999). J. Cell Physiol., 178, 359–370.

  • Rabbani SA . (1998). In Vivo, 12, 135–142.

  • Riccioni T, Cirielli C, Wang X, Passaniti A and Capogrossi MC . (1998). Gene Ther., 5, 747–754.

  • Risau W and Flamme I . (1995). Annu. Rev. Cell Dev. Biol., 11, 73–91.

  • Roninson IB . (2002). Cancer Lett., 179, 1–14.

  • Sato Y . (2000). Pharmacol. Ther., 87, 51–60.

  • Selvamurugan N, Pulumati MR, Tyson DR and Partridge NC . (2000). J. Biol. Chem., 275, 5037–5042.

  • Smith JS . (2002). Trends Cell Biol., 12, 404–406.

  • Smith CWJ and Valcarcel J . (2000). TIBS, 25, 381–388.

  • Sorek R and Amitai M . (2001). Nat. Biotechnol., 19, 196.

  • Stewart M, Terry A, Hu M, O'Hara M, Blyth K, Baxter E, Cameron E, Onions DE and Neil JC . (1997). Proc. Natl. Acad. Sci. USA, 94, 8646–8651.

  • Sun L, Vitolo M and Passaniti A . (2001). Cancer Res., 61, 4994–5001.

  • Taipale J and Keski-Oja J . (1997). FASEB J., 11, 51–59.

  • Takakura N, Watanabe T, Suenobu S, Yamada Y, Noda T, Ito Y, Satake M and Suda T . (2000). Cell, 102, 199–209.

  • Takeichi H, Hosokawa N, Hirayoshi K and Nagata K . (1994). Mol. Cell. Biol., 14, 567–575.

  • Tischer E, Mitchell R, Hartman T, Silva M, Gospodarowicz D, Fiddes JC and Abraham JA . (1991). J. Biol. Chem., 266, 11947–11954.

  • Vaillant F, Blyth K, Terry A, Bell M, Cameron ER, Neil J and Stewart M . (1999). Oncogene, 18, 7124–7134.

  • Wang W and Passaniti A . (1999). J. Cell Biochem., 73, 321–331.

  • Westendorf JJ and Hiebert SW . (1999). J. Cell Biochem., 32/33, 51–58.

  • Westendorf JJ, Zaidi SK, Cascino JE, Kahler R, van Wijnen AJ, Lian JB, Yoshida M, Stein GS and Li X . (2002). Mol. Cell. Biol., 22, 7982–7992.

  • Xiao G, Jiang D, Thomas P, Benson MD, Guan K, Karsenty G and Franceschi RT . (2000). J. Biol. Chem., 275, 4453–4459.

  • Xiao ZS, Thomas R, Hinson TK and Quarles LD . (1998). Gene, 214, 187–197.

  • Yang C, Chang J, Gorospe M and Passaniti A . (1996). Cell Growth Differ., 7, 161–171.

  • Zelzer E, Glotzer DJ, Hartmann C, Thomas D, Fukai N, Soker S and Olsen BR . (2001). Mech. Dev., 106, 97–106.

  • Zhang YW, Bae SC, Takahashi E and Ito Y . (1997). Oncogene, 15, 367–371.

Download references

Acknowledgements

We thank Dr Yoshiaki Ito for providing the PEBP2aA (RUNX2) cDNA clone, Dr Bert Vogelstein for the p21CIP1-promoter vector, Mr. Jay Hunter for laboratory management, and Dr Jeffrey Hasday for his helpful comments in the preparation of the manuscript. This study was supported, in part, by an American Heart Association Grant-in-Aid (AHA 0151434U) and a National Institutes of Health grant (CA95350-01) to A.P. Michele Vitolo is the recipient of an American Heart Association Pre-doctoral Fellowship (AHA 0215217U).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonino Passaniti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, L., Vitolo, M., Qiao, M. et al. Regulation of TGFβ1-mediated growth inhibition and apoptosis by RUNX2 isoforms in endothelial cells. Oncogene 23, 4722–4734 (2004). https://doi.org/10.1038/sj.onc.1207589

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1207589

Keywords

This article is cited by

Search

Quick links