Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Paper
  • Published:

PKC-η mediates glioblastoma cell proliferation through the Akt and mTOR signaling pathways

Abstract

We previously demonstrated that protein kinase C-η (PKC-η) mediates a phorbol 12-myristate-13-acetate (PMA)-induced proliferative response in human glioblastoma (GBM) cells. In this report, we show that PMA-stimulated activation of PKC-η in U-251 GBM cells resulted in activation of both Akt and the mammalian target of rapamycin (mTOR) signaling pathways and an increase in cell proliferation. Expression of a kinase dead PKC-η (PKC-ηKR) construct reduced the basal and PMA-evoked proliferation of PKC-η-expressing U-251 GBM cells, as well as abrogated the PMA-induced activation of Akt, mTOR, and the mTOR targets 4E-BP1 and STAT-3. Treatment of cells with the PI-3 kinase inhibitor LY294002 (10 μ M) or the mTOR inhibitor rapamycin (10 nM) also reduced PMA-induced proliferation and cell-cycle progression. Expression of a constitutively active PKC-η (PKC-ηΔNPS) construct in a GBM cell line with no endogenous PKC-η (U-1242) also provided evidence that PKC-η targets the Akt and mTOR signaling pathways. Moreover, activation of 4E-BP1 and STAT-3 in both PMA-treated U-251 and PKC-ηΔNPS-expressing U-1242 GBM cells was inhibited by rapamycin. However, activation of Akt, but not mTOR was inhibited by the PI-3 kinase inhibitor LY294002. This study identifies Akt and mTOR as downstream targets of PKC-η that are involved in GBM cell proliferation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P and Hemmings BA . (1996). EMBO J., 15, 6541–6551.

  • Aoki M, Blazek E and Vogt PK . (2001). Proc. Natl. Acad. Sci. USA, 98, 136–141.

  • Basu A . (1993). Pharmacol. Ther., 59, 257–280.

  • Benzil DL, Finkelstein SD, Epstein MH and Finch PW . (1992). Cancer Res., 52, 2951–2956.

  • Blobe GC, Obeid LM and Hannun YA . (1994). Cancer Metast. Rev., 13, 411–431.

  • Bogler O, Wren D, Barnett SC, Land H and Noble M . (1990). Proc. Natl. Acad. Sci. USA, 87, 6368–6372.

  • Bromberg JF, Wizeszcynska MH, Devgan G, Zhao Y, Pestell RG and Albanese C Darnell Jr JE . (1999). Cell, 98, 295–303.

  • Brunn GJ, Hudson CC, Sekulic A, Williams JM, Hosoi H, Houghton PJ, Lawrence Jr JC and Abraham RT . (1997). Science, 277, 99–101.

  • Catlett-Falcone R, Landowski TH, Oshiro MM, Turkson J, Levitzki A, Savino R, Ciliberto G, Moscinski L, Fernandez-Luna JL, Nunez G, Dalton WS and Jove R . (1999). Immunity, 10, 105–115.

  • Choe Y, Jung H, Khang I and Kim K . (2003). J Neuroendocrinol., 15, 508–515.

  • Couldwell WT, Uhm JH, Antel JP and Yong VW . (1991). Neurosurgery, 29, 880–887.

  • Ekstrand AJ, James CD, Cavenee WK, Seliger B, Pettersson RF and Collins VP . (1991). Cancer Res., 51, 2164–2172.

  • Eldar H, Zisman Y, Ullrich A and Livneh E . (1990). J. Biol. Chem., 265, 13290–13296.

  • Fadden P, Haystead TA and Lawrence Jr JC . (1997). J. Biol. Chem., 272, 10240–10247.

  • Fima E, Shtutman M, Libros P, Missel A, Shahaf G, Kahana G and Livneh E . (2001). Oncogene, 20, 6794–6804.

  • Fingar DC, Salama S, Tsou C, Harlow E and Blenis J . (2002). Genes Dev., 16, 1472–1487.

  • Frey MR, Saxon ML, Zhao X, Rollins A, Evans SS and Black JD . (1997). J. Biol. Chem., 272, 9424–9435.

  • Fujisawa H, Kurer M, Reis RM, Yonekawa Y, Kelihues P and Ohgaki H . (1999). Am. J. Pathol., 155, 387–394.

  • Garcia R and Jove R . (1998). J. Biomed. Sci., 5, 79–85.

  • Gescher A . (1992). Br. J. Cancer, 66, 10–19.

  • Gingras AC, Kennedy SG, O'Leary MA, Sonenberg N and Hay N . (1998). Genes Dev., 12, 502–513.

  • Gruber JR, Ohno S and Niles RM . (1992). J. Biol. Chem., 267, 13356–13360.

  • Guha A, Dashner K, Black PM, Wagner JA and Stiles CD . (1995). Int. J. Cancer, 60, 168–173.

  • Guizzetti M, Wei M and Costa LG . (1998). Eur. J. Pharmacol., 359, 223–233.

  • Hara K, Yonezawa K, Weng QP, Kozlowski MT, Belham C and Avruch J . (1998). J. Biol. Chem., 273, 14484–14494.

  • Hentges KE, Sirry B, Gingeras AC, Sarbassov D, Sonenberg N, Sabatini D and Peterson AS . (2001). Proc. Natl. Acad. Sci. USA, 98, 13796–13801.

  • Hesselager AG, Uhrbom L, Westermark B and Nister M . (2003). Cancer Res., 63, 4305–4309.

  • Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RR and Fuller GN . (2000). Nat. Genet., 25, 55–57.

  • Hussaini IM, Karns LR, Vinton G, Carpenter JE, Redpath GT, Sando JJ and VandenBerg SR . (2000). J. Biol. Chem., 275, 22348–22354.

  • Jiang BH, Aoki M, Zheng JZ, Li J and Vogt PK . (1999). Proc. Natl. Acad. Sci. USA, 96, 2077–2081.

  • Kashiwagi M, Ohba M, Watanabe H, Ishino K, Kasahara K, Sanai Y, Taya Y and Kuroki T . (2000). Oncogene, 19, 6334–6341.

  • Kijima T, Niwa H, Steinman RA, Drenning SD, Gooding WE, Wentzel AL, Xi S and Grandis JR . (2002). Cell Growth Differ., 13, 355–362.

  • Kimball SR, Shantz LM, Horetsky RL and Jefferson LS . (1999). J. Biol. Chem., 274, 11647–11652.

  • Kindregan HC, Rosenbaum SE, Ohno S and Niles RN . (1994). J. Biol. Chem., 269, 27756–27761.

  • Konopka G and Bonni A . (2003). Curr. Mol. Med., 3, 73–84.

  • Kozak M . (1991). J. Biol. Chem., 266, 19867–19870.

  • Krasagakis K, Lindschau C, Fimmel S, Eberle J, Quass P, Haller H and Orfanos CE . (2004). J. Cell Physiol., 199, 381–387.

  • Livneh E, Shimon T, Bechor E, Doki Y, Schieren E and Weinstein IB . (1996). Oncogene, 12, 1545–1555.

  • Mayer M, Bhakoo K and Noble M . (1994). Development, 120, 143–153.

  • Mayer M, Bogler O and Noble M . (1993). Glia, 8, 12–19.

  • McKinnon RD, Smith C, Behar T, Smith T and Dubois-Dalcq M . (1990). Glia, 7, 245–254.

  • Molkentin JD and Dorn GW . (2001). Ann. Rev. Physiol., 63, 391–426.

  • Nakaigawa N, Hirai S, Mizuno K, Shuin T, Hosaka M and Ohno S . (1996). Biochem. Biophys. Res. Commun., 222, 95–100.

  • Nave BT, Ouwens M, Withers DJ, Alessi DR and Shepherd PR . (1999). Biochem. J., 1, 427–431.

  • Nishizuka Y . (1984). Nature, 308, 693–698.

  • Nishizuka Y . (1988). Nature, 334, 661–665.

  • Nishizuka Y . (1995). FASEB J., 9, 484–496.

  • Ohba M, Ishino K, Kashiwagi M, Kawabe S, Chida K, Huh N and Kuroki T . (1998). Mol. Cell. Biol., 18, 5199–5207.

  • Okada Y . (2000). Verh. Dtsch. Ges. Pathol., 84, 33–42.

  • Patti ME, Brambilla E, Luzi L, Landaker EJ and Kahn CR . (1998). J. Clin. Invest., 101, 1519–1529.

  • Pause A, Methot N, Svitkin Y, Merrick WC and Sonenberg N . (1994). EMBO J., 13, 1205–1215.

  • Rajan P and Mckay RD . (1998). J. Neurosci., 18, 3620–3629.

  • Resnick MS, Luo X, Vinton G and Sando JJ . (1997). Cancer Res., 57, 2209–2215.

  • Rolli-Derkinderen M, Machavoine F, Baraban JM, Grolleau A, Beretta L and Dy M . (2003). J. Biol. Chem., 278, 18859–18867.

  • Rooprai HK, Vanmeter T, Panou C, Schnull S, Trillo-Pazos G, Davies D and Pilkington GJ . (1999). Int. J. Dev. Neurosci., (5–6), 613–623.

  • Sano T, Lin H, Chen X, Langford LA, Koul D, Bondy ML, Hess KR, Myers JN, Hong YK, Yung WK and Steck PA . (1999). Cancer Res., 59, 1820–1824.

  • Schalm SS, Fingar DC, Sabatini DM and Blenis J . (2003). Curr. Biol., 13, 797–806.

  • Todo T, Shitara N, Nakamura H, Takakura K and Ikeda K . (1991). Neurosurgery, 108, 11–16.

  • Wang X, Campbell LE, Miller CM and Proud GC . (1998). Biochem. J., 183, 261–267.

  • Ways DK, Kukoly CA, deVente J, Hooker JL, Bryant WO, Posekany KJ, Fletcher DJ, Cook PP and Parker PJ . (1995). J. Clin. Invest., 95, 1906–1915.

  • Weis J, Schonrock LM, Zuchner SL, Lie DC, Sure U, Schul C, Stogbauer F, Ringelstein EB and Halfter H . (1999). J. Neurooncol., 44, 243–253.

  • Welsh GI, Miller CM, Loughlin AJ, Price NT and Proud CG . (1998). FEBS Lett., 421, 125–130.

  • Wiederrecht GJ, Sabers CJ, Brunn GJ, Martin MM, Dumont FJ and Abraham RT . (1995). Prog. Cell Cycle Res., 1, 53–71.

  • Yamaguchi K, Ogita K, Nakamura S and Nishizuka Y . (1995). Biochem. Biophys. Res., 210, 639–647.

  • Yamamoto M, Ueno Y, Hayashi S and Fukushima T . (2002). Anticancer Res., 6C, 4265–4268.

  • Yokogami K, Wakisaka S, Avruch J and Reeves SA . (2000). Curr. Biol., 10, 47–50.

Download references

Acknowledgements

We thank John B Schell and Alex M Ward for helpful advice on retrovirus construction. We also thank Janet V Cross and Stacey A Trotter for helpful discussions. This work was supported by Grant CA90851 (National Cancer Institute).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sean E Aeder.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aeder, S., Martin, P., Soh, JW. et al. PKC-η mediates glioblastoma cell proliferation through the Akt and mTOR signaling pathways. Oncogene 23, 9062–9069 (2004). https://doi.org/10.1038/sj.onc.1208093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1208093

Keywords

This article is cited by

Search

Quick links