Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Silymarin and silibinin cause G1 and G2–M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: a comparison of flavanone silibinin with flavanolignan mixture silymarin

Abstract

Here, we assessed and compared the anticancer efficacy and associated mechanisms of silymarin and silibinin in human prostate cancer (PCA) PC3 cells; silymarin is comprised of silibinin and its other stereoisomers, including isosilybin A, isosilybin B, silydianin, silychristin and isosilychristin. Silymarin and silibinin (50–100 μg/ml) inhibited cell proliferation, induced cell death, and caused G1 and G2–M cell cycle arrest in a dose/time-dependent manner. Molecular studies showed that G1 arrest was associated with a decrease in cyclin D1, cyclin D3, cyclin E, cyclin-dependent kinase (CDK)4, CDK6 and CDK2 protein levels, and CDK2 and CDK4 kinase activity, together with an increase in CDK inhibitors (CDKIs) Kip1/p27 and Cip1/p21. Further, both agents caused cytoplasmic sequestration of cyclin D1 and CDK2, contributing to G1 arrest. The G2–M arrest by silibinin and silymarin was associated with decreased levels of cyclin B1, cyclin A, pCdc2 (Tyr15), Cdc2, and an inhibition of Cdc2 kinase activity. Both agents also decreased the levels of Cdc25B and cell division cycle 25C (Cdc25C) phosphatases with an increased phosphorylation of Cdc25C at Ser216 and its translocation from nucleus to the cytoplasm, which was accompanied by an increased binding with 14-3-3β. Both agents also increased checkpoint kinase (Chk)2 phosphorylation at Thr68 and Ser19 sites, which is known to phosphorylate Cdc25C at Ser216 site. Chk2-specific small interfering RNA largely attenuated the silymarin and silibinin-induced G2–M arrest. An increase in the phosphorylation of histone 2AX and ataxia telangiectasia mutated was also observed. These findings indicate that silymarin and silibinin modulate G1 phase cyclins–CDKs–CDKIs for G1 arrest, and the Chk2–Cdc25C–Cdc2/cyclin B1 pathway for G2–M arrest, together with an altered subcellular localization of critical cell cycle regulators. Overall, we observed comparable effects for both silymarin and silibinin at equal concentrations by weight, suggesting that silibinin could be a major cell cycle-inhibitory component in silymarin. However, other silibinin stereoisomers present in silymarin also contribute to its efficacy, and could be of interest for future investigation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

Abbreviations

PCA:

prostate cancer

CDK:

cyclin-dependent kinase

CDKI:

cyclin-dependent kinase inhibitor

Cdc25C:

cell division cycle 25C

Chk:

checkpoint kinase

H2A.X:

histone 2AX

FACS:

fluorescence-activated cell sorting

ATM:

ataxia telangiectasia mutated

ATR:

ataxia telangiectasia-Rad3-related

References

  • Abraham RT . (2001). Genes Dev 15: 2177–2196.

  • Adelaide J, Monges G, Derderian C, Seitz JF, Birnbaum D . (1995). Br J Cancer 71: 64–68.

  • Agarwal C, Singh RP, Dhanalakshmi S, Tyagi AK, Tecklenburg M, Sclafani RA et al. (2003). Oncogene 22: 8271–8282.

  • American Cancer Society (2005). Cancer Facts and Figures 2005: 1–60.

  • Arber N, Hibshoosh H, Moss SF, Sutter T, Zhang Y, Begg M et al. (1996). Gastroenterology 110: 669–674.

  • Bartek J, Lukas J . (2003). Cancer Cell 3: 421–429.

  • Bartkova J, Lukas J, Muller H, Strauss M, Gusterson B, Bartek J . (1995). Cancer Res 55: 949–956.

  • Bhatia N, Zhao J, Wolf DM, Agarwal R . (1999). Cancer Lett 147: 77–84.

  • Bornstein G, Bloom J, Sitry-Shevah D, Nakayama K, Pagano M, Hershko A . (2003). J Biol Chem 278: 25752–25757.

  • Brown AL, Lee CH, Schwarz JK, Mitiku N, Piwnica-Worms H, Chung JH . (1999). Proc Natl Acad Sci USA 96: 3745–3750.

  • Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ . (1995). Nature 377: 552–557.

  • Buscemi G, Perego P, Carenini N, Nakanishi M, Chessa L, Chen J et al. (2004). Oncogene 23: 7691–7700.

  • Caputi M, Groeger AM, Esposito V, Dean C, De Luca A, Pacilio C et al. (1999). Am J Respir Cell Mol Biol 20: 746–750.

  • Chaturvedi P, Eng WK, Zhu Y, Mattern MR, Mishra R, Hurle MR et al. (1999). Oncogene 18: 4047–4054.

  • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P . (1995). Cell 82: 675–684.

  • Dhanalakshmi S, Singh RP, Agarwal C, Agarwal R . (2002). Oncogene 21: 1759–1767.

  • Dong X, Wang L, Taniguchi K, Wang X, Cunningham JM, McDonnell SK et al. (2003). Am J Hum Genet 72: 270–280.

  • Drobnjak M, Osman I, Scher HI, Fazzari M, Cordon-Cardo C . (2000). Clin Cancer Res 6: 1891–1895.

  • Feldman BJ, Feldman D . (2001). Nat Rev Cancer 1: 34–45.

  • Flora K, Hahn M, Rosen H, Benner K . (1998). Am J Gastroenterol 93: 139–143.

  • Gabrielli BG, de Souza CP, Tonks ID, Clark JM, Hayward NK, Ellem KA . (1996). J Cell Sci 109: 1081–1093.

  • Gautier J, Solomon MJ, Booher RN, Bazan JF, Kirschner MW . (1991). Cell 67: 197–211.

  • Gillett C, Fantl V, Smith R, Fisher C, Bartek J, Dickson C et al. (1994). Cancer Res 54: 1812–1817.

  • Grana X, Reddy P . (1995). Oncogene 11: 211–219.

  • Gstaiger M, Jordan R, Lim M, Catzavelos C, Mestan J, Slingerland J et al. (2001). Proc Natl Acad Sci USA 98: 5043–5048.

  • Hanahan D, Weinberg RA . (2000). Cell 100: 57–70.

  • Hoffman I, Draetta G, Karsenti E . (1994). EMBO J 13: 4302–4310.

  • Hou DX, Fujii M, Terahara N, Yoshimoto M . (2004). J Biomed Biotechnol 2004: 321–325.

  • Kastan MB, Canman CE, Leonard CJ . (1995). Cancer Metastasis Rev 14: 3–15.

  • Kawabe T . (2004). Mol Cancer Ther 3: 513–519.

  • Kim NC, Graf TN, Sparacino CM, Wani MC, Wall ME . (2003). Org Biomol Chem 1: 1684–1689.

  • Koivisto P, Kolmer M, Visakorpi T, Kallioniemi OP . (1998). Am J Pathol 152: 1–9.

  • Kossatz U, Dietrich N, Zender L, Buer J, Manns MP, Malek NP . (2004). Genes Dev 18: 2602–2607.

  • Lammer C, Wagerer S, Saffrich R, Mertens D, Ansorge W, Hoffmann I . (1998). J Cell Sci 111: 2445–2453.

  • Langner C, von Wasielewski R, Ratschek M, Rehak P, Zigeuner R . (2004). Virchows Arch 445: 631–636.

  • Li Q, Murphy M, Ross J, Sheehan C, Carlson JA . (2004). J Cutan Pathol 31: 633–642.

  • Lloyd RV, Erickson LA, Jin L, Kulig E, Qian X, Cheville JC et al. (1999). Am J Pathol 154: 313–323.

  • Lopez-Girona A, Furnari B, Mondesert O, Russell P . (1999). Nature 397: 172–175.

  • Lyon MA, Ducret AP, Wipf P, Lazo JS . (2002). Nat Rev Drug Discov 1: 961–976.

  • Mallikarjuna G, Dhanalakshmi S, Singh RP, Agarwal C, Agarwal R . (2004). Cancer Res 64: 6349–6356.

  • Matsuoka S, Rotman G, Ogawa A, Shiloh Y, Tamai K, Elledge SJ . (2000). Proc Natl Acad Sci USA 97: 10389–10394.

  • McDonald III ER, El-Deiry WS . (2000). Int J Oncol 16: 871–886.

  • Melchionna R, Chen XB, Blasina A, McGowan CH . (2000). Nat Cell Biol 2: 762–765.

  • Millar JB, Blevitt J, Gerace L, Sadhu K, Featherstone C, Russell P . (1991). Proc Natl Acad Sci USA 88: 10500–10504.

  • Morgan DO . (1995). Nature (London) 374: 131–134.

  • Nakayama K, Nagahama H, Minamishima YA, Miyake S, Ishida N, Hatakeyama S et al. (2004). Dev Cell 6: 661–672.

  • Neuhouser ML . (2004). Nutr Cancer 50: 1–7.

  • Nilsson I, Hoffmann I . (2000). Prog Cell Cycle Res 4: 107–114.

  • Obaya AJ, Sedivy JM . (2002). Cell Mol Life Sci 59: 126–142.

  • Owa T, Yoshino H, Yoshimatsu K, Nagasu T . (2001). Curr Med Chem 8: 1487–1503.

  • Pares A, Planas R, Torres M, Caballeria J, Viver JM, Acero D et al. (1998). J Hepatol 28: 615–621.

  • Peng CY, Graves PR, Thoma RS, Wu Z, Shaw AS, Piwnica-Worms H . (1997). Science 277: 1501–1505.

  • Polyak K, Kato JY, Soloman MJ, Sherr CJ, Massague J, Roberts JM et al. (1994). Genes Dev 8: 9–22.

  • Rogakou EP, Pilch DR, Orr AH, Ivanova VS, Bonner WM . (1998). J Biol Chem 273: 5858–5868.

  • Sebastian B, Kakizuka A, Hunter T . (1993). Proc Natl Acad Sci USA 90: 3521–3524.

  • Seki T, Yamashita K, Nishitani H, Takagi T, Russell P, Nishimoto T . (1992). Mol Biol Cell 12: 1373–1388.

  • Seppälä EH, Ikonen T, Mononen N, Autio V, Rökman A, Matikainen MA et al. (2003). Br J Cancer 89: 1966–1970.

  • Sharma G, Singh RP, Chan DC, Agarwal R . (2003). Anticancer Res 23: 2649–2655.

  • Sherr CJ . (1995). Trends Biochem Sci 20: 187–190.

  • Sherr CJ, Roberts JM . (1999). Genes Dev 13: 1501–1512.

  • Singh RP, Agarwal R . (2004). Curr Cancer Drug Targets 4: 1–11.

  • Singh RP, Mallikarjuna GU, Sharma G, Dhanalakshmi S, Tyagi AK, Chan DC et al. (2004). Clin Cancer Res 10: 8641–8647.

  • Singh SV, Herman-Antosiewicz A, Singh AV, Lew KL, Srivastava SK, Kamath R et al. (2004). J Biol Chem 279: 25813–25822.

  • Sumrejkanchanakij P, Tamamori-Adachi M, Matsunaga Y, Eto K, Ikeda MA . (2003). Oncogene 22: 8723–8730.

  • Surh YJ . (2003). Nat Rev Cancer 3: 768–780.

  • Takagaki N, Sowa Y, Oki T, Nakanishi R, Yogosawa S, Sakai T . (2005). Int J Oncol 26: 185–189.

  • Taylor WR, Stark GR . (2001). Oncogene 20: 1803–1815.

  • Thelen P, Wuttke W, Jarry H, Grzmil M, Ringert RH . (2004). J Urol 171: 1934–1938.

  • Turowski P, Franckhauser C, Morris MC, Vaglio P, Fernandez A, Lamb NJ . (2003). Mol Biol Cell 14: 2984–2998.

  • Vahteristo P, Bartkova J, Eerola H, Syrjäkoski K, Ojala S, Kilpivaara O et al. (2002). Am J Hum Genet 71: 432–438.

  • von Zglinicki T, Saretzki G, Ladhoff J, d'Adda di Fagagna F, Jackson SP . (2005). Mech Ageing Dev 126: 111–117.

  • Wagner H, Diesel P, Seitz M . (1974). Arzneimittelforsch 24: 466–471.

  • Wellington K, Jarvis B . (2001). BioDrugs 15: 465–489.

  • Xiong Y, Hannon GJ, Zhang H, Casso D, Kobayashi R, Beach D . (1993). Nature 366: 701–704.

  • Yang ES, Burnstein KL . (2003). J Biol Chem 278: 46862–46868.

  • Ye R, Bodero A, Zhou BB, Khanna KK, Lavin MF, Lees-Miller SP . (2001). J Biol Chem 276: 4828–4833.

  • Ye R, Goodarzi AA, Kurz EU, Saito S, Higashimoto Y, Lavin MF et al. (2004). DNA Repair (Amst) 3: 235–244.

  • Yih LH, Lee TC . (2000). Cancer Res 60: 6346–6352.

  • Yim D, Singh RP, Agarwal C, Lee S, Chi H, Agarwal R . (2005). Cancer Res 65: 1035–1044.

  • Zhang Y, Ma WY, Kaji A, Bode AM, Dong Z . (2002). J Biol Chem 277: 3124–3131.

  • Zhao H, Watkins JL, Piwnica-Worms H . (2002). Proc Natl Acad Sci USA 99: 14795–14800.

  • Zheng XY, Ding W, Xie LP, Chen ZD . (2004). Ai Zheng 23: 215–218.

  • Zi X, Agarwal R . (1999). Proc Natl Acad Sci USA 96: 7490–7495.

  • Zi X, Feyes DK, Agarwal R . (1998a). Clin Cancer Res 4: 1055–1064.

  • Zi X, Grasso AW, Kung HJ, Agarwal R . (1998b). Cancer Res 58: 1920–1929.

Download references

Acknowledgements

This work was supported in part by NIH grants RO1 CA102514 and RO1 CA104286.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R Agarwal.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Deep, G., Singh, R., Agarwal, C. et al. Silymarin and silibinin cause G1 and G2–M cell cycle arrest via distinct circuitries in human prostate cancer PC3 cells: a comparison of flavanone silibinin with flavanolignan mixture silymarin. Oncogene 25, 1053–1069 (2006). https://doi.org/10.1038/sj.onc.1209146

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209146

Keywords

This article is cited by

Search

Quick links