Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer

Abstract

Mutations in Wnt pathway genes are rare in human breast cancer, yet activation of the pathway is evident from the misolocalization of β-catenin. We searched for relationships in the expression of Wnt pathway genes and found that both secreted frizzled related protein 1 (Sfrp1) and TCF-4 transcripts were all highly downregulated in a common subset of breast cancers relative to normal breast tissue. Sfrp1 has been previously characterized as a Wnt inhibitor, and we found that interfering with its expression in the human mammary epithelial cell line MCF10A activated Wnt signaling. Reduction of TCF-4 levels in breast cancer was surprising as it is a transcription factor that is responsive to Wnt signaling. Therefore, we investigated a possible inhibitory role for TCF-4 in human breast cells as well as further characterizing Sfrp1. We identified CD24 as a Wnt target in MCF10A cells and used its expression a marker of Wnt signaling. Interfering with either Sfrp1 or TCF-4 in this cell line enhanced CD24 expression. Furthermore, removal of TCF/LEF binding sites in a CD24-luciferase reporter resulted in elevated reporter gene expression. Our results indicate that both Sfrp1 and TCF-4 repress Wnt signaling in breast tissue and their downregulation contributes to the activation of Wnt signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Bafico A, Liu G, Goldin L, Harris V, Aaronson SA . (2004). Cancer Cell 6: 497–506.

  • Brannon M, Brown JD, Bates R, Kimelman D, Moon RT . (1999). Development 126: 3159–3170.

  • Brantjes H, Barker N, van EJ, Clevers H . (2002). Biol Chem 383: 255–261.

  • Bukholm IK, Nesland JM, Borresen-Dale AL . (2000). J Pathol 190: 15–19.

  • Cavallo RA, Cox RT, Moline MM, Roose J, Polevoy GA, Clevers H et al. (1998). Nature 395: 604–608.

  • Chung GG, Zerkowski MP, Ocal IT, Dolled-Filhart M, Kang JY, Psyrri A et al. (2004). Cancer 100: 2084–2092.

  • Cowin P, Rowlands TM, Hatsell SJ . (2005). Curr Opin Cell Biol 17: 499–509.

  • Dorsky RI, Itoh M, Moon RT, Chitnis A . (2003). Development 130: 1937–1947.

  • Duval A, Rolland S, Tubacher E, Bui H, Thomas G, Hamelin R . (2000). Cancer Res 60: 3872–3879.

  • Feinberg AP, Tycko B . (2004). Nat Rev Cancer 4: 143–153.

  • Finch PW, He X, Kelley MJ, Uren A, Schaudies RP, Popescu NC et al. (1997). Proc Natl Acad Sci USA 94: 6770–6775.

  • Giles RH, van Es JH, Clevers H . (2003). Biochim Biophys Acta 1653: 1–24.

  • Hatsell S, Rowlands T, Hiremath M, Cowin P . (2003). J Mammary Gland Biol Neoplasia 8: 145–158.

  • Hecht A, Vleminckx K, Stemmler MP, van Roy F, Kemler R . (2000). EMBO J 19: 1839–1850.

  • Hovanes K, Li TW, Munguia JE, Truong T, Milovanovic T, Lawrence Marsh J et al. (2001). Nat Genet 28: 53–57.

  • Imbert A, Eelkema R, Jordan S, Feiner H, Cowin P . (2001). J Cell Biol 153: 555–568.

  • Kim CH, Oda T, Itoh M, Jiang D, Artinger KB, Chandrasekharappa SC et al. (2000). Nature 407: 913–916.

  • Kouzmenko AP, Takeyama K, Ito S, Furutani T, Sawatsubashi S, Maki A et al. (2004). J Biol Chem 279: 40255–40258.

  • Kramps T, Peter O, Brunner E, Nellen D, Froesch B, Chatterjee S et al. (2002). Cell 109: 47–60.

  • Kristiansen G, Winzer KJ, Mayordomo E, Bellach J, Schluns K, Denkert C et al. (2003). Clin Cancer Res 9: 4906–4913.

  • Lin SY, Xia W, Wang JC, Kwong KY, Spohn B, Wen Y et al. (2000). Proc Natl Acad Sci USA 97: 4262–4266.

  • Lo MC, Gay F, Odom R, Shi Y, Lin R . (2004). Cell 117: 95–106.

  • Merrill BJ, Gat U, DasGupta R, Fuchs E . (2001). Genes Dev 15: 1688–1705.

  • Merrill BJ, Pasolli HA, Polak L, Rendl M, Garcia-Garcia MJ, Anderson KV et al. (2004). Development 131: 263–274.

  • Michaelson JS, Leder P . (2001). Oncogene 20: 5093–5099.

  • Moser AR, Mattes EM, Dove WF, Lindstrom MJ, Haag JD, Gould MN . (1993). Proc Natl Acad Sci USA 90: 8977–8981.

  • Nelson WJ, Nusse R . (2004). Science 303: 1483–1487.

  • Nusse R, Varmus HE . (1982). Cell 31: 99–109.

  • Pirruccello SJ, LeBien TW . (1986). J Immunol 136: 3779–3784.

  • Polakis P . (2000). Genes Dev 14: 1837–1851.

  • Reginato MJ, Mills KR, Paulus1 JK, Lynch DK, Sgroi DC, Debnath J et al. (2003). Nat Cell Biol 6: 733–740.

  • Roose J, Clevers H . (1999). Biochim Biophys Acta 1424: M23–M37.

  • Roose J, Huls G, van Beest M, Moerer P, van der Horn K, Goldschmeding R et al. (1999). Science 285: 1923–1926.

  • Ryo A, Nakamura M, Wulf G, Liou YC, Lu KP . (2001). Nat Cell Biol 3: 793–801.

  • Sinner D, Rankin S, Lee M, Zorn AM . (2004). Development 131: 3069–3080.

  • Soule HD, Maloney TM, Wolman SR, Peterson Jr WD, Brenz R, McGrath CM et al. (1990). Cancer Res 50: 6075–6086.

  • Suzuki H, Gabrielson E, Chen W, Anbazhagan R, van Engeland M, Weijenberg MP et al. (2002). Nat Genet 31: 141–149.

  • Takemaru KI, Moon RT . (2000). J Cell Biol 149: 249–254.

  • Tetsu O, McCormick F . (1999). Nature 398: 422–426.

  • Thayer SP, di Magliano MP, Heiser PW, Nielsen CM, Roberts DJ, Lauwers GY et al. (2003). Nature 425: 851–856.

  • Thorpe CJ, Moon RT . (2004). Development 131: 2899–2909.

  • Ugolini F, Adelaide J, Charafe-Jauffret E, Nguyen C, Jacquemier J, Jordan B et al. (1999). Oncogene 18: 1903–1910.

  • Ugolini F, Charafe-Jauffret E, Bardou VJ, Geneix J, Adelaide J, Labat-Moleur F et al. (2001). Oncogene 20: 5810–5817.

  • van de Wetering M, Castrop J, Korinek V, Clevers H . (1996). Mol Cell Biol 16: 745–752.

  • van de Wetering M, Cavallo R, Dooijes D, van Beest M, van Es J, Loureiro J et al. (1997). Cell 88: 789–799.

  • Watkins DN, Berman DM, Burkholder SG, Wang B, Beachy PA, Baylin SB . (2003). Nature 422: 313–317.

  • Wodicka L, Dong H, Mittmann M, Ho MH, Lockhart DJ . (1997). Nat Biotechnol 15: 1359–1367.

  • Wong SC, Lo SF, Lee KC, Yam JW, Chan JK, Wendy Hsiao WL . (2002). J Pathol 196: 145–153.

Download references

Acknowledgements

We thank Mickey Williams and Jane Winer for help in performing microarray analysis, Bonnee Rubinfeld for helpful discussion and Bill Forrest for help with statistical analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C Sakanaka.

Additional information

Supplementary Information accompanies the paper on Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shulewitz, M., Soloviev, I., Wu, T. et al. Repressor roles for TCF-4 and Sfrp1 in Wnt signaling in breast cancer. Oncogene 25, 4361–4369 (2006). https://doi.org/10.1038/sj.onc.1209470

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209470

Keywords

This article is cited by

Search

Quick links