Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Self-association of the transmembrane domain of RET underlies oncogenic activation by MEN2A mutations

Abstract

In patients with medullary thyroid carcinoma (MTC) and type 2A multiple endocrine neoplasia (MEN2A), mutations of cysteine residues in the extracellular juxtamembrane region of the RET receptor tyrosine kinase cause the formation of covalent receptor dimers linked by intermolecular disulfide bonds between unpaired cysteines, followed by oncogenic activation of the RET kinase. The close proximity to the plasma membrane of the affected cysteine residues prompted us to investigate the possible role of the transmembrane (TM) domain of RET (RET-TM) in receptor–receptor interactions underlying dimer formation. Strong self-association of the RET-TM was observed in a biological membrane. Mutagenesis studies indicated the involvement of the evolutionary conserved residues Ser-649 and Ser-653 in RET-TM oligomerization. Unexpectedly, RET-TM interactions were also abrogated in the A639G/A641R double mutant, first identified in a sporadic case of MTC. In agreement with this, no transforming activity could be detected in full-length RET carrying the A639G and A641R mutations, which remained fully responsive to glial cell-line-derived neurotrophic factor (GDNF) stimulation. When introduced in the context of C634R – a cysteine replacement that is prevalent in MEN2A cases – the A639G/A641R mutations significantly reduced dimer formation and transforming activity in this otherwise highly oncogenic RET variant. These data suggest that a strong propensity to self-association in the RET-TM underlies – and may be required for – dimer formation and oncogenic activation of juxtamembrane cysteine mutants of RET, and explains the close proximity to the plasma membrane of cysteine residues implicated in MEN2A and MTC syndromes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  • Abrescia C, Sjostrand D, Kjaer S, Ibáñez CF . (2005). FEBS Lett 579: 3789–3796.

  • Airaksinen MS, Saarma M . (2002). Nat Rev Neurosci 3: 383–394.

  • Arighi E, Popsueva A, Degl’Innocenti D, Borrello MG, Carniti C, Perala NM et al. (2004). Mol Endocrinol 18: 1004–1017 (E-pub ahead of print 2004 Jan 8).

  • Asai N, Iwashita T, Matsuyama M, Takahashi M . (1995). Mol Cell Biol 15: 1613–1619.

  • Asai N, Iwashita T, Murakami H, Takanari H, Ohmori K, Ichihara M et al. (1999). Biochem Biophys Res Commun 255: 587–590.

  • Besset V, Scott RP, Ibáñez CF . (2000). J Biol Chem 275: 39159–39166.

  • Bongarzone I, Vigano E, Alberti L, Borrello MG, Pasini B, Greco A et al. (1998). Oncogene 16: 2295–2301.

  • Burke CL, Stern DF . (1998). Mol Cell Biol 18: 5371–5379.

  • Carlomagno F, De Vita G, Berlingieri MT, de Franciscis V, Melillo RM, Colantuoni V et al. (1996). EMBO J 15: 2717–2725.

  • Cerchia L, Libri D, Carlomagno MS, de Franciscis V . (2003). Biochem J 372: 897–903.

  • Chappuis-Flament S, Pasini A, De Vita G, Segouffin-Cariou C, Fusco A, Attie T et al. (1998). Oncogene 17: 2851–2861.

  • Dawson JP, Weinger JS, Engelman DM . (2002). J Mol Biol 316: 799–805.

  • Donis-Keller H, Dou S, Chi D, Carlson KM, Toshima K, Lairmore TC et al. (1993). Hum Mol Genet 2: 851–856.

  • Edery P, Lyonnet S, Mulligan LM, Pelet A, Dow E, Abel L et al. (1994). Nature 367: 378–380.

  • Ellgaard L, Helenius A . (2003). Nat Rev Mol Cell Biol 4: 181–191.

  • Eng C, Clayton D, Schuffenecker I, Lenoir G, Cote G, Gagel RF et al. (1996). JAMA 276: 1575–1579.

  • Geneste O, Bidaud C, De Vita G, Hofstra RM, Tartare-Deckert S, Buys CH et al. (1999). Hum Mol Genet 8: 1989–1999.

  • Gimm O, Marsh DJ, Andrew SD, Frilling A, Dahia PL, Mulligan LM et al. (1997). J Clin Endocrinol Metab 82: 3902–3904.

  • Gratkowski H, Lear JD, DeGrado WF . (2001). Proc Natl Acad Sci USA 98: 880–885.

  • Gurezka R, Laage R, Brosig B, Langosch D . (1999). J Biol Chem 274: 9265–9270.

  • Hahn M, Bishop J . (2001). Proc Natl Acad Sci USA 98: 1053–1058.

  • Hoppner W, Dralle H, Brabant G . (1998). Hum Mutat 1: S128–S130.

  • Hoppner W, Ritter MM . (1997). Hum Mol Genet 6: 587–590.

  • Horenstein J, Wagner DA, Czajkowski C, Akabas MH . (2001). Nat Neurosci 4: 477–485.

  • Iwashita T, Kato M, Murakami H, Asai N, Ishiguro Y, Ito S et al. (1999). Oncogene 18: 3919–3922.

  • Iwashita T, Kurokawa K, Qiao S, Murakami H, Asai N, Kawai K et al. (2001). Gastroenterology 121: 24–33.

  • Jhiang SM, Fithian L, Weghorst CM, Clark OH, Falko JM, O’Dorisio TM et al. (1996). Thyroid 6: 115–121.

  • Jiang G, Hunter T . (1999). Curr Biol 9: R568–R571.

  • Kalinin VN, Amosenko FA, Shabanov MA, Lubchenko LN, Hosch SB, Garkavtseva RF et al. (2001). J Mol Med 79: 609–612.

  • Kashuk CS, Stone EA, Grice EA, Portnoy ME, Green ED, Sidow A et al. (2005). Proc Natl Acad Sci USA 102: 8949–8954.

  • Kjaer S, Ibáñez CF . (2003). Hum Mol Genet 12: 2133–2144.

  • Kubatzky KF, Liu W, Goldgraben K, Simmerling C, Smith SO, Constantinescu SN . (2005). J Biol Chem 280: 14844–14854 (E-pub ahead of print 2005 Jan 18).

  • Kubatzky KF, Ruan W, Gurezka R, Cohen J, Ketteler R, Watowich SS et al. (2001). Curr Biol 11: 110–115.

  • Langosch D, Brosig B, Kolmar H, Fritz HJ . (1996). J Mol Biol 263: 525–530.

  • Li E, You M, Hristova K . (2005). Biochemistry 44: 352–360.

  • Li R, Gorelik R, Nanda V, Law PB, Lear JD, DeGrado WF et al. (2004). J Biol Chem 279: 26666–26673.

  • Livnah O, Stura EA, Middleton SA, Johnson DL, Jolliffe LK, Wilson IA . (1999). Science 283: 987–990.

  • Manie S, Santoro M, Fusco A, Billaud M . (2001). Trends Genet 17: 580–589.

  • Marx SJ . (2005). Nat Rev Cancer 5: 367–375.

  • McClain MS, Iwamoto H, Cao P, Vinion-Dubiel AD, Li Y, Szabo G et al. (2003). J Biol Chem 278: 12101–12108.

  • Mendrola JM, Berger MB, King MC, Lemmon MA . (2002). J Biol Chem 277: 4704–4712.

  • Miyauchi A, Futami H, Hai N, Yokozawa T, Kuma K, Aoki N et al. (1999). Jpn J Cancer Res 90: 1–5.

  • Moriki T, Maruyama H, Maruyama IN . (2001). J Mol Biol 311: 1011–1026.

  • Mulligan LM, Eng C, Healey CS, Clayton D, Kwok JB, Gardner E et al. (1994). Nat Genet 6: 70–74.

  • Mulligan LM, Kwok JB, Healey CS, Elsdon MJ, Eng C, Gardner E et al. (1993). Nature 363: 458–460.

  • Roy R, Laage R, Langosch D . (2004). Biochemistry 43: 4964–4970.

  • Russ WP, Engelman DM . (1999). Proc Natl Acad Sci USA 96: 863–868.

  • Russ WP, Engelman DM . (2000). J Mol Biol 296: 911–919.

  • Santoro M, Carlomagno F, Romano A, Bottaro DP, Dathan NA, Grieco M et al. (1995). Science 267: 381–383.

  • Schlessinger J . (2000). Cell 103: 211–225.

  • Schneider D, Engelman DM . (2004). J Mol Biol 343: 799–804.

  • Senes A, Engel DE, DeGrado WF . (2004). Curr Opin Struct Biol 14: 465–479.

  • Senes A, Gerstein M, Engelman DM . (2000). J Mol Biol 296: 921–936.

  • Seubert N, Royer Y, Staerk J, Kubatzky KF, Moucadel V, Krishnakumar S et al. (2003). Mol Cell 12: 1239–1250.

  • Stanley AM, Fleming KG . (2005). J Mol Biol 347: 759–772.

  • Sulistijo ES, Jaszewski TM, MacKenzie KR . (2003). J Biol Chem 278: 51950–51956.

  • Takahashi M, Cooper GM . (1987). Mol Cell Biol 7: 1378–1385.

  • Takahashi M, Iwashita T, Santoro M, Lyonnet S, Lenoir GM, Billaud M . (1999). Hum Mutat 13: 331–336.

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG . (1997). Nucleic Acids Res 25: 4876–4882.

  • van Heyningen V . (1994). Nature 367: 319–320.

  • Vidal M, Wells S, Ryan A, Cagan R . (2005). Cancer Res 65: 3538–3541.

  • Young MT, Tanner MJ . (2003). J Biol Chem 278: 32954–32961.

  • Zhou FX, Merianos HJ, Brunger AT, Engelman DM . (2001). Proc Natl Acad Sci USA 98: 2250–2255.

Download references

Acknowledgements

We thank Marçal Vilar for suggesting the use of the ToxCAT system and for fruitful discussions, and Xiaoli Li for secretarial help. This work was supported by grants from the Swedish Foundation for Strategic Research, Swedish Medical Research Council (K99-33X-10908-06C), Swedish Cancer Society (3872-B02-09XAC), Vth Framework Program of the European Union (QLRT-1999-00099) and Swedish Fund for Research without Laboratory Animals.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to S Kjær or C F Ibáñez.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kjær, S., Kurokawa, K., Perrinjaquet, M. et al. Self-association of the transmembrane domain of RET underlies oncogenic activation by MEN2A mutations. Oncogene 25, 7086–7095 (2006). https://doi.org/10.1038/sj.onc.1209698

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209698

Keywords

This article is cited by

Search

Quick links