Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Raf 1 represses expression of the tight junction protein occludin via activation of the zinc-finger transcription factor slug

Abstract

Although dysregulation of tight junction (TJ) proteins is observed in epithelial malignancy, their participation in epithelial transformation is poorly understood. Recently we demonstrated that expression of oncogenic Raf 1 in Pa4 epithelial cells disrupts TJs and induces an oncogenic phenotype by downregulating expression of the TJ protein, occludin. Here we report the mechanism by which Raf 1 regulates occludin expression. Raf 1 inhibited occludin transcription by repressing a minimal segment of the occludin promoter in concert with upregulation of the transcriptional repressor, Slug without influencing the well-documented transcriptional repressor, Snail. Overexpression of Slug in Pa4 cells recapitulated the effect of Raf 1 on occludin expression, and depletion of Slug by small interfering RNA abrogated the effect of Raf 1 on occludin. Finally, chromatin immunoprecipitation assays and site-directed mutagenesis demonstrated a direct interaction between Slug and an E-box within the minimal Raf 1-responsive segment of the occludin promoter. These findings support a role of Slug in mediating Raf 1-induced transcriptional repression of occludin and subsequent epithelial to mesenchymal transition.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  • Ando-Akatsuka Y, Saitou M, Hirase T, Kishi M, Sakakibara A, Itoh M et al. (1996). Interspecies diversity of the occludin sequence: cDNA cloning of human, mouse, dog, and rat-kangaroo homologues. J Cell Biol 133: 43–47.

    Article  CAS  PubMed  Google Scholar 

  • Balda MS, Whitney JA, Flores C, Gonzalez S, Cereijido M, Matter K . (1996). Functional dissociation of paracellular permeability and transepithelial electrical resistance and disruption of the apical-basolateral intramembrane diffusion barrier by expression of a mutant tight junction membrane protein. J Cell Biol 134: 1031–1049.

    Article  CAS  PubMed  Google Scholar 

  • Barbera MJ, Puig I, Dominguez D, Julien-Grille S, Guaita-Esteruelas S, Peiro S et al. (2004). Regulation of Snail transcription during epithelial to mesenchymal transition of tumor cells. Oncogene 23: 7345–7354.

    Article  CAS  PubMed  Google Scholar 

  • Batlle E, Sancho E, Franci C, Dominguez D, Monfar M, Baulida J et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol 2: 84–89.

    Article  CAS  PubMed  Google Scholar 

  • Birchmeier W, Weidner KM, Behrens J . (1993). Molecular mechanisms leading to loss of differentiation and gain of invasiveness in epithelial cells. J Cell Sci Suppl 17: 159–164.

    Article  CAS  PubMed  Google Scholar 

  • Bruder JT, Heidecker G, Rapp UR . (1992). Serum-, TPA-, and Ras-induced expression from Ap-1/Ets-driven promoters requires Raf-1 kinase. Genes Dev 6: 545–556.

    Article  CAS  PubMed  Google Scholar 

  • Bulkholm IK, Nesland JM, Karesen R, Jacobsen U, Borresen-Dale AL . (1998). E-cadherin and alpha-, beta-, gamma-catenin protein expression in relation to metastasis in human breast carcinoma. J Pathol 185: 262–266.

    Article  Google Scholar 

  • Cano A, Perez-Moreno MA, Rodrigo I, Locascio A, Blanco MJ, del Barrio MG et al. (2000). The transcription factor snail controls epithelial–mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol 2: 76–83.

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Lu Q, Schneeberger EE, Goodenough DA . (2000). Restoration of tight junction structure and barrier function by down-regulation of the mitogen-activated protein kinase pathway in ras-transformed Madin–Darby canine kidney cells. Mol Biol Cell 11: 849–862.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dhawan P, Singh AB, Deane NG, No Y, Shiou SR, Schmidt C et al. (2005). Claudin-1 regulates cellular transformation and metastatic behavior in colon cancer. J Clin Invest 115: 1765–1776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fujita N, Jaye DL, Kajita M, Geigerman C, Moreno CS, Wade PA . (2003). MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell 113: 207–219.

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Hirase T, Itoh M, Nagafuchi A, Yonemura S, Tsukita S . (1993). Occludin: a novel integral membrane protein localizing at tight junctions. J Cell Biol 123: 1777–1788.

    Article  CAS  PubMed  Google Scholar 

  • Furuse M, Itoh M, Hirase T, Nagafuchi A, Yonemura S, Tsukita S . (1994). Direct association of occludin with ZO-1 and its possible involvement in the localization of occludin at tight junctions. J Cell Biol 127: 1617–1626.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez-Mariscal L, Betanzos A, Nava P, Jaramillo BE . (2003). Tight junction proteins. Prog Biophys Mol Biol 81: 1–44.

    Article  CAS  PubMed  Google Scholar 

  • Hoover KB, Liao SY, Bryant PJ . (1998). Loss of the tight junction MAGUK ZO-1 in breast cancer: relationship to glandular differentiation and loss of heterozygosity. Am J Pathol 153: 1767–1773.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kajita M, McClinic KN, Wade PA . (2004). Aberrant expression of the transcription factors snail and slug alters the response to genotoxic stress. Mol Cell Biol 24: 7559–7566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang Y, Massague J . (2004). Epithelial–mesenchymal transitions: twist in development and metastasis. Cell 118: 277–279.

    Article  CAS  PubMed  Google Scholar 

  • Kimura Y, Shiozaki H, Hirao M, Maeno Y, Doki Y, Inoue M et al. (1997). Expression of occludin, tight-junction-associated protein, in human digestive tract. Am J Pathol 151: 45–54.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kominsky SL, Argani P, Korz D, Evron E, Raman V, Garrett E et al. (2003). Loss of the tight junction protein claudin-7 correlates with histological grade in both ductal carcinoma in situ and invasive ductal carcinoma of the breast. Oncogene 22: 2021–2033.

    Article  CAS  PubMed  Google Scholar 

  • Kurrey NK, K A, Bapat SA . (2005). Snail and Slug are major determinants of ovarian cancer invasiveness at the transcription level. Gynecol Oncol 97: 155–165.

    Article  CAS  PubMed  Google Scholar 

  • Lan M, Kojima T, Osanai M, Chiba H, Sawada N . (2004). Oncogenic Raf-1 regulates epithelial to mesenchymal transition via distinct signal transduction pathways in an immortalized mouse hepatic cell line. Carcinogenesis 25: 2385–2395.

    Article  CAS  PubMed  Google Scholar 

  • Lehmann K, Janda E, Pierreux CE, Rytomaa M, Schulze A, McMahon M et al. (2000). Raf induces TGFbeta production while blocking its apoptotic but not invasive responses: a mechanism leading to increased malignancy in epithelial cells. Genes Dev 14: 2610–2622.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li D, Mrsny RJ . (2000). Oncogenic Raf-1 disrupts epithelial tight junctions via downregulation of occludin. J Cell Biol 148: 791–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locascio A, Vega S, de Frutos CA, Manzanares M, Nieto MA . (2002). Biological potential of a functional human SNAIL retrogene. J Biol Chem 277: 38803–38809.

    Article  CAS  PubMed  Google Scholar 

  • Matter K, Aijaz S, Tsapara A, Balda MS . (2005). Mammalian tight junctions in the regulation of epithelial differentiation and proliferation. Curr Opin Cell Biol 17: 453–458.

    Article  CAS  PubMed  Google Scholar 

  • Matter K, Balda MS . (1998). Biogenesis of tight junctions: the C-terminal domain of occludin mediates basolateral targeting. J Cell Sci 111(Part 4): 511–519.

    CAS  PubMed  Google Scholar 

  • Matter K, Balda MS . (2003). Signalling to and from tight junctions. Nat Rev Mol Cell Biol 4: 225–236.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy KM, Skare IB, Stankewich MC, Furuse M, Tsukita S, Rogers RA et al. (1996). Occludin is a functional component of the tight junction. J Cell Sci 109(Part 9): 2287–2298.

    CAS  PubMed  Google Scholar 

  • Nieto MA . (2002). The snail superfamily of zinc-finger transcription factors. Nat Rev Mol Cell Biol 3: 155–166.

    Article  CAS  PubMed  Google Scholar 

  • Nottage M, Siu LL . (2002). Rationale for Ras and raf-kinase as a target for cancer therapeutics. Curr Pharm Des 8: 2231–2242.

    Article  CAS  PubMed  Google Scholar 

  • Perez-Mancera PA, Gonzalez-Herrero I, Perez-Caro M, Gutierrez-Cianca N, Flores T, Gutierrez-Adan A et al. (2005). SLUG in cancer development. Oncogene 24: 3073–3082.

    Article  CAS  PubMed  Google Scholar 

  • Ruch RJ, Cesen-Cummings K, Malkinson AM . (1998). Role of gap junctions in lung neoplasia. Exp Lung Res 24: 523–539.

    Article  CAS  PubMed  Google Scholar 

  • Tobioka H, Isomura H, Kokai Y, Tokunaga Y, Yamaguchi J, Sawada N . (2004a). Occludin expression decreases with the progression of human endometrial carcinoma. Hum Pathol 35: 159–164.

    Article  CAS  PubMed  Google Scholar 

  • Tobioka H, Tokunaga Y, Isomura H, Kokai Y, Yamaguchi J, Sawada N . (2004b). Expression of occludin, a tight-junction-associated protein, in human lung carcinomas. Virchows Arch 445: 472–476.

    Article  CAS  PubMed  Google Scholar 

  • Van Itallie CM, Anderson JM . (1997). Occludin confers adhesiveness when expressed in fibroblasts. J Cell Sci 110(Part 9): 1113–1121.

    CAS  PubMed  Google Scholar 

  • Wang Z, Mandell KJ, Parkos CA, Mrsny RJ, Nusrat A . (2005). The second loop of occludin is required for suppression of Raf1-induced tumor growth. Oncogene 24: 4412–4420.

    Article  CAS  PubMed  Google Scholar 

  • Wellbrock C, Karasarides M, Marais R . (2004). The RAF proteins take centre stage. Nat Rev Mol Cell Biol 5: 875–885.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank S Voss for the excellent technical assistance. This work was supported by grants from the National Institutes of Health (DK 59888 to AN, DK 61379 to CP), Intramural Research Program of NIEHS/NIH (PW), Crohn's & Colitis Foundation (AN) and Digestive Diseases Research Development Center Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Nusrat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, Z., Wade, P., Mandell, K. et al. Raf 1 represses expression of the tight junction protein occludin via activation of the zinc-finger transcription factor slug. Oncogene 26, 1222–1230 (2007). https://doi.org/10.1038/sj.onc.1209902

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209902

Keywords

This article is cited by

Search

Quick links