Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Nitric oxide-mediated inhibition of androgen receptor activity: possible implications for prostate cancer progression

Abstract

Chronic inflammation increases the risk of cancer and many cancers, including prostate cancer, arise at sites of chronic inflammation. Inducible nitric oxide synthase (iNOS) is an enzyme dominantly expressed during inflammatory reactions. Although synthesis of high amounts of nitric oxide (NO) by iNOS has been demonstrated in pathophysiological processes, such as acute or chronic inflammation, autoimmune diseases or tumorigenesis, the role of iNOS activity in most of these diseases is poorly understood. Analysing prostate cancer biopsies by immunohistochemistry we found iNOS protein expression in tumor cells strongly paralleled by nitrotyrosine suggesting that iNOS is fully active. In vitro, NO inhibits androgen receptor-dependent promoter activity and prostate specific antigen production as well as DNA-binding activity of the androgen receptor (AR) in a concentration-dependent manner. Inhibition of the activity of androgen receptor-dependent reporter constructs is neither owing to diminished AR protein levels nor owing to an inhibition of its nuclear import. In addition, NO inhibits the proliferation of androgen receptor-positive prostate cancer cells significantly more efficiently than proliferation of androgen receptor-negative prostate cancer cells. In summary, our findings suggest that intratumoral iNOS activity favors development of prostate cancer cells that are able to proliferate androgen receptor-independently, thereby promoting prostate tumor progression.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Aaltoma SH, Lipponen PK, Kosma VM . (2001). Inducible nitric oxide synthase (iNOS) expression and its prognostic value in prostate cancer. Anticancer Res 21: 3101–3106.

    CAS  PubMed  Google Scholar 

  • Adam RM, Kim J, Lin J, Orsola A, Zhuang L, Rice DC et al. (2002). Heparin-binding epidermal growth factor-like growth factor stimulates androgen-independent prostate tumor growth and antagonizes androgen receptor function. Endocrinology 143: 4599–4608.

    Article  CAS  PubMed  Google Scholar 

  • Attardi BJ, Burgenson J, Hild SA, Reel JR . (2004). Steroid hormonal regulation of growth, prostate specific antigen secretion, and transcription mediated by the mutated androgen receptor in CWR22Rv1 human prostate carcinoma cells. Mol Cell Endocrinol 222: 121–132.

    Article  CAS  PubMed  Google Scholar 

  • Baltaci S, Orhan D, Gogus C, Turkolmez K, Tulunay O, Gogus O . (2001). Inducible nitric oxide synthase expression in benign prostatic hyperplasia, low- and high-grade prostatic intraepithelial neoplasia and prostatic carcinoma. BJU Int 88: 100–103.

    Article  CAS  PubMed  Google Scholar 

  • Berendji D, Kolb-Bachofen V, Meyer KL, Grapenthin O, Weber H, Wahn V et al. (1997). Nitric oxide mediates intracytoplasmic and intranuclear zinc release. FEBS Lett 405: 37–41.

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM . (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Bronte V, Kasic T, Gri G, Gallana K, Borsellino G, Marigo I et al. (2005). Boosting antitumor responses of T lymphocytes infiltrating human prostate cancers. J Exp Med 201: 1257–1268.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cleutjens KB, van Eekelen CC, van der Korput HA, Brinkmann AO, Trapman J . (1996). Two androgen response regions cooperate in steroid hormone regulated activity of the prostate-specific antigen promoter. J Biol Chem 271: 6379–6388.

    Article  CAS  PubMed  Google Scholar 

  • Craft N, Chhor C, Tran C, Belldegrun A, DeKernion J, Witte ON et al. (1999). Evidence for clonal outgrowth of androgen-independent prostate cancer cells from androgen-dependent tumors through a two-step process. Cancer Res 59: 5030–5036.

    CAS  PubMed  Google Scholar 

  • Cronauer MV, Nessler-Menardi C, Klocker H, Maly K, Hobisch A, Bartsch G et al. (2000). Androgen receptor protein is down-regulated by basic fibroblast growth factor in prostate cancer cells. Br J Cancer 82: 39–45.

    Article  CAS  PubMed  Google Scholar 

  • Cronauer MV, Schulz WA, Ackermann R, Burchardt M . (2005). Effects of WNT/beta-catenin pathway activation on signaling through T-cell factor and androgen receptor in prostate cancer cell lines. Int J Oncol 26: 1033–1040.

    CAS  PubMed  Google Scholar 

  • Cronauer MV, Schulz WA, Burchardt T, Ackermann R, Burchardt M . (2004). Inhibition of p53 function diminishes androgen receptor-mediated signaling in prostate cancer cell lines. Oncogene 23: 3541–3549.

    Article  CAS  PubMed  Google Scholar 

  • Cronauer MV, Schulz WA, Burchardt T, Anastasiadis AG, de la Taille A, Ackermann R et al. (2003). The androgen receptor in hormone-refractory prostate cancer: relevance of different mechanisms of androgen receptor signaling. Int J Oncol 23: 1095–1102.

    CAS  PubMed  Google Scholar 

  • Ekmekcioglu S, Tang CH, Grimm EA . (2005). NO news is not necessarily good news in cancer. Curr Cancer Drug Targets 5: 103–115.

    Article  CAS  PubMed  Google Scholar 

  • Feldman BJ, Feldman D . (2001). The development of androgen-independent prostate cancer. Nat Rev Cancer 1: 34–45.

    Article  CAS  PubMed  Google Scholar 

  • Garbán HJ, Bonavida B . (2001). Nitric oxide inhibits the transcription repressor yin-yang 1 binding activity at the silencer region of the Fas promoter: a pivotal role for nitric oxide in the up-regulation of Fas gene expression in human tumor cells. J Immunol 167: 75–81.

    Article  PubMed  Google Scholar 

  • Garbán HJ, Marquez-Garbán DC, Pietras RJ, Ignarro LJ . (2005). Rapid nitric oxide-mediated S-nitrosylation of estrogen receptor: regulation of estrogen-dependent gene transcription. Proc Natl Acad Sci USA 102: 2632–2636.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gast A, Neuschmid-Kaspar F, Klocker H, Cato AC . (1995). A single amino acid exchange abolishes dimerization of the androgen receptor and causes Reifenstein syndrome. Mol Cell Endocrinol 111: 93–98.

    Article  CAS  PubMed  Google Scholar 

  • Gradini R, Realacci M, Ginepri A, Naso G, Santangelo C, Cela O et al. (1999). Nitric oxide synthases in normal and benign hyperplastic human prostate: immunohistochemistry and molecular biology. J Pathol 189: 224–229.

    Article  CAS  PubMed  Google Scholar 

  • Grune T, Merker K, Sandig G, Davies KJ . (2003). Selective degradation of oxidatively modified protein substrates by the proteasome. Biochem Biophys Res Commun 305: 709–718.

    Article  CAS  PubMed  Google Scholar 

  • Hobisch A, Culig Z, Radmayr C, Bartsch G, Klocker H, Hittmair A . (1996). Androgen receptor status of lymph node metastases from prostate cancer. Prostate 28: 129–135.

    Article  CAS  PubMed  Google Scholar 

  • Hobisch A, Eder IE, Putz T, Horninger W, Bartsch G, Klocker H et al. (1998). Interleukin-6 regulates prostate-specific protein expression in prostate carcinoma cells by activation of the androgen receptor. Cancer Res 58: 4640–4645.

    CAS  PubMed  Google Scholar 

  • Hongo F, Garban H, Huerta-Yepez S, Vega M, Jazirehi AR, Mizutani Y et al. (2005). Inhibition of the transcription factor yin yang 1 activity by S-nitrosation. Biochem Biophys Res Commun 336: 692–701.

    Article  CAS  PubMed  Google Scholar 

  • Horoszewicz JS, Leong SS, Kawinski E, Karr JP, Rosenthal H, Chu TM et al. (1983). LNCaP model of human prostatic carcinoma. Cancer Res 43: 1809–1818.

    CAS  PubMed  Google Scholar 

  • Hrabie JA, Arnold EV, Citro ML, George C, Keefer LK . (2000). Reaction of nitric oxide at the beta-carbon of enamines. A new method of preparing compounds containing the diazeniumdiolate functional group. J Org Chem 65: 5745–5751.

    Article  CAS  PubMed  Google Scholar 

  • Huguenin S, Fleury-Feith J, Kheuang L, Jaurand MC, Bolla M, Riffaud JP et al. (2004). Nitrosulindac (NCX 1102): a new nitric oxide-donating non-steroidal anti-inflammatory drug (NO-NSAID), inhibits proliferation and induces apoptosis in human prostatic epithelial cell lines. Prostate 61: 132–141.

    Article  CAS  PubMed  Google Scholar 

  • Keefer LK, Nims RW, Davies KM, Wink DA . (1996). ‘NONOates’ (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: convenient nitric oxide dosage forms. Methods Enzymol 268: 281–293.

    Article  CAS  PubMed  Google Scholar 

  • Kleinert H, Wallerath T, Fritz G, Ihrig-Biedeert I, Rodriguez-Pascual F, Geller DA et al. (1998). Cytokine induction of NO synthase II in human DLD-1 cells: roles of the JAK-STAT, AP-1 and NF-kB-signaling pathways. Br J Pharmacol 125: 193–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klotz T, Bloch W, Volberg C, Engelmann U, Addicks K . (1998). Selective expression of inducible nitric oxide synthase in human prostate carcinoma. Cancer 82: 1897–1903.

    Article  CAS  PubMed  Google Scholar 

  • Kröncke KD, Carlberg C . (2000). Inactivation of zinc finger transcription factors provides a mechanism for a gene regulatory role of nitric oxide. FASEB J 14: 166–173.

    Article  PubMed  Google Scholar 

  • Kröncke KD, Fehsel K, Schmidt T, Zenke FT, Dasting I, Wesener JR et al. (1994). Nitric oxide destroys zinc–sulfur clusters inducing zinc release from metallothionein and inhibition of the zinc finger-type yeast transcription activator LAC9. Biochem Biophys Res Commun 200: 1105–1110.

    Article  PubMed  Google Scholar 

  • Kröncke KD, Haase H, Beyersmann D, Kolb-Bachofen V, Hayer-Hartl MK . (2001). Nitric oxide inhibits the cochaperone activity of the RING finger-like protein DnaJ. Nitric Oxide 5: 289–295.

    Article  PubMed  Google Scholar 

  • Kröncke KD, Suschek CV, Kolb-Bachofen V . (2000). Implications of inducible nitric oxide synthase expression and enzyme activity. Antioxid Redox Signal 2: 585–605.

    Article  PubMed  Google Scholar 

  • Le X, Wei D, Huang S, Lancaster Jr JR, Xie K . (2005). Nitric oxide synthase II suppresses the growth and metastasis of human cancer regardless of its up-regulation of protumor factors. Proc Natl Acad Sci USA 102: 8758–8763.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Marth C, Muller-Holzner E, Greiter E, Cronauer MV, Zeimet AG, Doppler W et al. (1990). Gamma-interferon reduces expression of the protooncogene c-erbB-2 in human ovarian carcinoma cells. Cancer Res 50: 7037–7041.

    CAS  PubMed  Google Scholar 

  • Michalaki V, Syrigos K, Charles P, Waxman J . (2004). Serum levels of IL-6 and TNF-alpha correlate with clinicopathological features and patient survival in patients with prostate cancer. Br J Cancer 90: 2312–2316.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mossmann T . (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assay. J Immunol Methods 65: 55–62.

    Article  Google Scholar 

  • Nelson WG, De Marzo AM, DeWeese TL, Isaacs WB . (2004). The role of inflammation in the pathogenesis of prostate cancer. J Urol 172: S6–S11.

    Article  CAS  PubMed  Google Scholar 

  • Nienhaus GU, Nienhaus K, Hölzle A, Ivanchenko S, Renzi F, Oswald F et al. (2005). Photoconvertible fluorescent protein EosFP – biophysical properties and cell biology applications. Photochem Photobiol 82: 351–358.

    Article  Google Scholar 

  • Olson MV, Lee J, Zhang F, Wang A, Dong Z . (2006). Inducible nitric oxide synthase activity is essential for inhibition of prostatic tumor growth by interferon-beta gene therapy. Cancer Gene Ther 13: 676–685.

    Article  CAS  PubMed  Google Scholar 

  • Park JG, Oie HK, Sugarbaker PH, Henslee JG, Chen TR, Johnson BE et al. (1987). Characteristics of cell lines established from human colorectal carcinoma. Cancer Res 47: 6710–6718.

    CAS  PubMed  Google Scholar 

  • Pearce LL, Gandley RE, Han W, Wasserloos K, Stitt M, Kanai AJ et al. (2000). Role of metallothionein in nitric oxide signaling as revealed by a green fluorescent fusion protein. Proc Natl Acad Sci USA 97: 477–482.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royle JS, Ross JA, Ansell I, Bollina P, Tulloch DN, Habib FK . (2004). Nitric oxide donating nonsteroidal anti-inflammatory drugs induce apoptosis in human prostate cancer cell systems and human prostatic stroma via caspase-3. J Urol 172: 338–344.

    Article  PubMed  Google Scholar 

  • Rudeck M, Volk T, Sitte N, Grune T . (2000). Ferritin oxidation in vitro: implication of iron release and degradation by the 20S proteasome. IUBMB Life 49: 451–456.

    Article  CAS  PubMed  Google Scholar 

  • Sramkoski RM, Pretlow TG, Giaconia JM, Pretlow TP, Schwartz S, Sy MS et al. (1999). A new human prostate carcinoma cell line, 22Rv1. In vitro Cell Dev Biol Anim 35: 403–409.

    Article  CAS  PubMed  Google Scholar 

  • Stone KR, Mickey DD, Wunderli H, Mickey GH, Paulson DF . (1978). Isolation of a human prostate carcinoma cell line (DU 145). Int J Cancer 21: 274–281.

    Article  CAS  PubMed  Google Scholar 

  • Tepper CG, Boucher DL, Ryan PE, Ma AH, Xia L, Lee LF et al. (2002). Characterization of a novel androgen receptor mutation in a relapsed CWR22 prostate cancer xenograft and cell line. Cancer Res 62: 6606–6614.

    CAS  PubMed  Google Scholar 

  • Thomsen LL, Miles DW . (1998). Role of nitric oxide in tumour progression: lessons from human tumours. Cancer Metastasis Rev 17: 107–118.

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Torbenson M, Wang Q, Ro JY, Becich M . (2003). Expression of inducible nitric oxide synthase in paired neoplastic and non-neoplastic primary prostate cell cultures and prostatectomy specimen. Urol Oncol 21: 117–122.

    Article  PubMed  Google Scholar 

  • Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Röcker C, Salih A et al. (2004). EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc Natl Acad Sci USA 101: 15905–15910.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank Professor Dr KD Spindler for helpful suggestions. Supported by research grants from the Deutsche Forschungsgemeinschaft (SFB 503/B11 to KDK), the Doktor Robert Pfleger-Stiftung (to MB), and Vaincre le Cancer, Lions Club, Luxembourg (to MVC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K-D Kröncke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cronauer, M., Ince, Y., Engers, R. et al. Nitric oxide-mediated inhibition of androgen receptor activity: possible implications for prostate cancer progression. Oncogene 26, 1875–1884 (2007). https://doi.org/10.1038/sj.onc.1209984

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1209984

Keywords

This article is cited by

Search

Quick links