Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the β4 integrin and the PI3k pathway

Abstract

Pancreatic ductal adenocarcinoma is a devastating disease, characterized by a rapid progression and poor treatment response. Using gene expression profiling of pancreatic cancer tissues, we previously identified periostin as a potential diagnostic and therapeutic target. In this study, we report the overexpression of periostin in a larger set of pancreatic cancer tissues and show that although the periostin transcript is exclusively expressed in tumour cells, the protein product is only detected in the extracellular matrix adjacent to cancer cells. Using an enzyme-linked immunosorbent assay (ELISA) assay, we show significantly increased levels of periostin in the sera of pancreatic cancer patients compared to non-cancer controls. We demonstrate that periostin promotes the invasiveness of tumour cells by increasing the motility of cells without inducing expression of proteases, and enhances the survival of tumour cells exposed to hypoxic conditions. At the molecular level, we provide evidence that the α6β4 integrin complex acts as the cell receptor of periostin in pancreatic cancer cells and that interaction promotes phosphorylation of focal adhesion kinase (FAK) and protein kinase B (AKT) though activation of the PI3 kinase pathway, but not the RAS/MEK/ERK pathway. These findings suggest an important role of periostin in pancreatic cancer and provide a rationale to study periostin for diagnostic and therapeutic applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

Abbreviations

PDAC:

pancreatic ductal adenocarcinoma

PN:

periostin

rPN:

recombinant periostin protein

PMA:

Phorbol 12-myristate 13-acetate

FGFα:

acidic Fibroblast Growth Factor^TGFβ, Transforming Growth Factor beta

PI:

propidium iodine

QRT-PCR:

quantitative real-time PCR

ISH:

In situ mRNA hybridization

References

  • Akakura N, Kobayashi M, Horiuchi I, Suzuki A, Wang J, Chen J et al. (2001). Constitutive expression of hypoxia-inducible factor-1alpha renders pancreatic cancer cells resistant to apoptosis induced by hypoxia and nutrient deprivation. Cancer Res 61: 6548–6554.

    CAS  PubMed  Google Scholar 

  • Bao S, Ouyang G, Bai X, Huang Z, Ma C, Liu M et al. (2004). Periostin potently promotes metastatic growth of colon cancer by augmenting cell survival via the Akt/PKB pathway. Cancer Cell 5: 329–339.

    Article  CAS  Google Scholar 

  • Billings PC, Whitbeck JC, Adams CS, Abrams WR, Cohen AJ, Engelsberg BN et al. (2002). The transforming growth factor-beta-inducible matrix protein (beta)ig-h3 interacts with fibronectin. J Biol Chem 277: 28003–28009.

    Article  CAS  Google Scholar 

  • Bissell MJ, Radisky D . (2001). Putting tumours in context. Nat Rev Cancer 1: 46–54.

    Article  CAS  Google Scholar 

  • Bornstein P, Sage EH . (2002). Matricellular proteins: extracellular modulators of cell function. Curr Opin Cell Biol 14: 608–616.

    Article  CAS  Google Scholar 

  • Boukerche H, Baril P, Tabone E, Berard F, Sanhadji K, Balme B et al. (2000). A new Mr 55,000 surface protein implicated in melanoma progression: association with a metastatic phenotype. Cancer Res 60: 5848–5856.

    CAS  PubMed  Google Scholar 

  • Crnogorac-Jurcevic T, Missiaglia E, Blaveri E, Gangeswaran R, Jones M, Terris B et al. (2003). Molecular alterations in pancreatic carcinoma: expression profiling shows that dysregulated expression of S100 genes is highly prevalent. J Pathol 201: 63–74.

    Article  CAS  Google Scholar 

  • DiMagno EP, Reber HA, Tempero MA . (1999). AGA technical review on the epidemiology, diagnosis, and treatment of pancreatic ductal adenocarcinoma. American Gastroenterological Association. Gastroenterology 117: 1464–1484.

    Article  CAS  Google Scholar 

  • Dowen SE, Crnogorac-Jurcevic T, Gangeswaran R, Hansen M, Eloranta JJ, Bhakta V et al. (2005). Expression of S100P and its novel binding partner S100PBPR in early pancreatic cancer. Am J Pathol 166: 81–92.

    Article  CAS  Google Scholar 

  • Framson PE, Sage EH . (2004). SPARC and tumor growth: where the seed meets the soil? J Cell Biochem 92: 679–690.

    Article  CAS  Google Scholar 

  • Gibson MA, Kumaratilake JS, Cleary EG . (1997). Immunohistochemical and ultrastructural localization of MP78/70 (betaig-h3) in extracellular matrix of developing and mature bovine tissues. J Histochem Cytochem 45: 1683–1696.

    Article  CAS  Google Scholar 

  • Gillan L, Matei D, Fishman DA, Gerbin CS, Karlan BY, Chang DD . (2002). Periostin secreted by epithelial ovarian carcinoma is a ligand for alpha(V)beta(3) and alpha(V)beta(5) integrins and promotes cell motility. Cancer Res 62: 5358–5364.

    CAS  PubMed  Google Scholar 

  • Gleason B, Adley B, Rao MS, Diaz LK . (2005). Immunohistochemical detection of the beta4 integrin subunit in pancreatic adenocarcinoma. J Histochem Cytochem 53: 799–801.

    Article  CAS  Google Scholar 

  • Hall PA, Coates P, Lemoine NR, Horton MA . (1991). Characterization of integrin chains in normal and neoplastic human pancreas. J Pathol 165: 33–41.

    Article  CAS  Google Scholar 

  • Horiuchi K, Amizuka N, Takeshita S, Takamatsu H, Katsuura M, Ozawa H et al. (1999). Identification and characterization of a novel protein, periostin, with restricted expression to periosteum and periodontal ligament and increased expression by transforming growth factor beta. J Bone Miner Res 14: 1239–1249.

    Article  CAS  Google Scholar 

  • Hosotani R, Kawaguchi M, Masui T, Koshiba T, Ida J, Fujimoto K et al. (2002). Expression of integrin alphaVbeta3 in pancreatic carcinoma: relation to MMP-2 activation and lymph node metastasis. Pancreas 25: e30–35.

    Article  Google Scholar 

  • Hruban RH, Goggins M, Parsons J, Kern SE . (2000). Progression model for pancreatic cancer. Clin Cancer Res 6: 2969–2972.

    CAS  PubMed  Google Scholar 

  • Jemal A, Murray T, Samuels A, Ghafoor A, Ward E, Thun MJ . (2003). Cancer statistics, 2003. CA Cancer J Clin 53: 5–26.

    Article  Google Scholar 

  • Kii I, Amizuka N, Minqi L, Kitajima S, Saga Y, Kudo A . (2006). Periostin is an extracellular matrix protein required for eruption of incisors in mice. Biochem Biophys Res Commun 342: 766–772.

    Article  CAS  Google Scholar 

  • Kim CJ, Yoshioka N, Tambe Y, Kushima R, Okada Y, Inoue H . (2005). Periostin is down-regulated in high grade human bladder cancers and suppresses in vitro cell invasiveness and in vivo metastasis of cancer cells. Int J Cancer 117: 51–58.

    Article  CAS  Google Scholar 

  • Kim MO, Yun SJ, Kim IS, Sohn S, Lee EH . (2003). Transforming growth factor-beta-inducible gene-h3 (beta(ig)-h3) promotes cell adhesion of human astrocytoma cells in vitro: implication of alpha6beta4 integrin. Neurosci Lett 336: 93–96.

    Article  CAS  Google Scholar 

  • Koninger J, Giese T, di Mola FF, Wente MN, Esposito I, Bachem MG et al. (2004). Pancreatic tumor cells influence the composition of the extracellular matrix. Biochem Biophys Res Commun 322: 943–949.

    Article  Google Scholar 

  • Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM et al. (2000). Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48: 919–922.

    Article  CAS  Google Scholar 

  • LeBaron RG, Bezverkov KI, Zimber MP, Pavelec R, Skonier J, Purchio AF . (1995). Beta IG-H3, a novel secretory protein inducible by transforming growth factor-beta, is present in normal skin and promotes the adhesion and spreading of dermal fibroblasts in vitro. J Invest Dermatol 104: 844–849.

    Article  CAS  Google Scholar 

  • Li P, Oparil S, Feng W, Chen YF . (2004). Hypoxia-responsive growth factors upregulate periostin and osteopontin expression via distinct signaling pathways in rat pulmonary arterial smooth muscle cells. J Appl Physiol 97: 1550–1558.

    Article  CAS  Google Scholar 

  • Lindner V, Wang Q, Conley BA, Friesel RE, Vary CP . (2005). Vascular injury induces expression of periostin: implications for vascular cell differentiation and migration. Arterioscler Thromb Vasc Biol 25: 77–83.

    Article  CAS  Google Scholar 

  • Lipscomb EA, Mercurio AM . (2005). The alpha6beta4 integrin maintains the survival of human breast carcinoma cells in vivo. Cancer Metastasis Rev 24: 413–423.

    Article  CAS  Google Scholar 

  • Litvin J, Zhu S, Norris R, Markwald R . (2005). Periostin family of proteins: therapeutic targets for heart disease. Anat Rec A Discov Mol Cell Evol Biol 287A: 1205–1212.

    Article  CAS  Google Scholar 

  • Morgan MR, Thomas GJ, Russell A, Hart IR, Marshall JF . (2004). The integrin cytoplasmic-tail motif EKQKVDLSTDC is sufficient to promote tumor cell invasion mediated by matrix metalloproteinase (MMP)-2 or MMP-9. J Biol Chem 279: 26533–26539.

    Article  CAS  Google Scholar 

  • Rich JN, Shi Q, Hjelmeland M, Cummings TJ, Kuan CT, Bigner DD et al. (2003). Bone-related genes expressed in advanced malignancies induce invasion and metastasis in a genetically defined human cancer model. J Biol Chem 278: 15951–15957.

    Article  CAS  Google Scholar 

  • Rios H, Koushik SV, Wang H, Wang J, Zhou HM, Lindsley A et al. (2005). Periostin null mice exhibit dwarfism, incisor enamel defects, and an early-onset periodontal disease-like phenotype. Mol Cell Biol 25: 11131–11144.

    Article  CAS  Google Scholar 

  • Rodriguez-Viciana P, Warne PH, Dhand R, Vanhaesebroeck B, Gout I, Fry MJ et al. (1994). Phosphatidylinositol-3-OH kinase as a direct target of Ras. Nature 370: 527–532.

    Article  CAS  Google Scholar 

  • Sasaki H, Dai M, Auclair D, Fukai I, Kiriyama M, Yamakawa Y et al. (2001a). Serum level of the periostin, a homologue of an insect cell adhesion molecule, as a prognostic marker in nonsmall cell lung carcinomas. Cancer 92: 843–848.

    Article  CAS  Google Scholar 

  • Sasaki H, Dai M, Auclair D, Kaji M, Fukai I, Kiriyama M et al. (2001b). Serum level of the periostin, a homologue of an insect cell adhesion molecule, in thymoma patients. Cancer Lett 172: 37–42.

    Article  CAS  Google Scholar 

  • Sasaki H, Lo KM, Chen LB, Auclair D, Nakashima Y, Moriyama S et al. (2001c). Expression of Periostin, homologous with an insect cell adhesion molecule, as a prognostic marker in non-small cell lung cancers. JPN J Cancer Res 92: 869–873.

    Article  CAS  Google Scholar 

  • Sasaki H, Sato Y, Kondo S, Fukai I, Kiriyama M, Yamakawa Y et al. (2002). Expression of the periostin mRNA level in neuroblastoma. J Pediatr Surg 37: 1293–1297.

    Article  Google Scholar 

  • Sasaki H, Yu CY, Dai M, Tam C, Loda M, Auclair D et al. (2003). Elevated serum periostin levels in patients with bone metastases from breast but not lung cancer. Breast Cancer Res Treat 77: 245–252.

    Article  CAS  Google Scholar 

  • Shao R, Bao S, Bai X, Blanchette C, Anderson RM, Dang T et al. (2004). Acquired expression of periostin by human breast cancers promotes tumor angiogenesis through up-regulation of vascular endothelial growth factor receptor 2 expression. Mol Cell Biol 24: 3992–4003.

    Article  CAS  Google Scholar 

  • Shi Q, Bao S, Maxwell JA, Reese ED, Friedman HS, Bigner DD et al. (2004). Secreted protein acidic, rich in cysteine (SPARC), mediates cellular survival of gliomas through AKT activation. J Biol Chem 279: 52200–52209.

    Article  CAS  Google Scholar 

  • Skonier J, Neubauer M, Madisen L, Bennett K, Plowman GD, Purchio AF . (1992). cDNA cloning and sequence analysis of beta ig-h3, a novel gene induced in a human adenocarcinoma cell line after treatment with transforming growth factor-beta. DNA Cell Biol 11: 511–522.

    Article  CAS  Google Scholar 

  • Stoll V, Calleja V, Vassaux G, Downward J, Lemoine NR . (2005). Dominant negative inhibitors of signalling through the phosphoinositol 3-kinase pathway for gene therapy of pancreatic cancer. Gut 54: 109–116.

    Article  CAS  Google Scholar 

  • Tai IT, Dai M, Chen LB . (2005). Periostin induction in tumor cell line explants and inhibition of in vitro cell growth by anti-periostin antibodies. Carcinogenesis 26: 908–915.

    Article  CAS  Google Scholar 

  • Takeshita S, Kikuno R, Tezuka K, Amann E . (1993). Osteoblast-specific factor 2: cloning of a putative bone adhesion protein with homology with the insect protein fasciclin I. Biochem J 294: 271–278.

    Article  CAS  Google Scholar 

  • Yoon SO, Shin S, Mercurio AM . (2005). Hypoxia stimulates carcinoma invasion by stabilizing microtubules and promoting the Rab11 trafficking of the alpha6beta4 integrin. Cancer Res 65: 2761–2769.

    Article  CAS  Google Scholar 

  • Zhao H, Bernardo MM, Osenkowski P, Sohail A, Pei D, Nagase H et al. (2004). Differential inhibition of membrane type 3 (MT3)-matrix metalloproteinase (MMP) and MT1-MMP by tissue inhibitor of metalloproteinase (TIMP)-2 and TIMP-3 regulates pro-MMP-2 activation. J Biol Chem 279: 8592–8601.

    Article  CAS  Google Scholar 

  • Zinn K, McAllister L, Goodman CS . (1988). Sequence analysis and neuronal expression of fasciclin I in grasshopper and Drosophila. Cell 53: 577–587.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr John F Marshall for kindly providing the amphotropic retrovirus expressing human β3 integrin cDNA (Centre for Tumour Biology, Institute of Cancer and the CR-UK Clinical Centre, London, UK). This work was supported by a programme grant from Cancer Research UK (C355/A6253) and CORE programme grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N R Lemoine.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baril, P., Gangeswaran, R., Mahon, P. et al. Periostin promotes invasiveness and resistance of pancreatic cancer cells to hypoxia-induced cell death: role of the β4 integrin and the PI3k pathway. Oncogene 26, 2082–2094 (2007). https://doi.org/10.1038/sj.onc.1210009

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210009

Keywords

This article is cited by

Search

Quick links