Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

AKT activity regulates the ability of mTOR inhibitors to prevent angiogenesis and VEGF expression in multiple myeloma cells

Abstract

We recently demonstrated that the mammalian target of rapamycin (mTOR) inhibitor, CCI-779, curtailed the growth of a subcutaneous challenge of multiple myeloma (MM) cells in immunodeficient mice. This antitumor effect was associated with prevention of cell proliferation, induction of apoptosis and inhibition of angiogenesis. Interestingly, myeloma tumors with heightened AKT activation were particularly sensitive to a CCI-779-induced antitumor response. To investigate whether part of the differential sensitivity was due to an AKT-regulated effect on angiogenesis, we compared the effects of mTOR inhibitors against isogenic MM cell lines that only differ by their degree of AKT activity. In this model, heightened AKT activity significantly sensitized MM cells to the following inhibitory effects of mTOR inhibition: angiogenesis in vivo, vascular endothelial growth factor (VEGF) expression in vitro and in vivo and VEGF translation (but not transcription). Assessment of p70S6 kinase activity indicated that rapamycin induced comparable mTOR inhibition in both cell lines suggesting that an adverse effect on VEGF cap-dependent translation would be comparable. Internal ribosome entry site (IRES)-mediated cap-independent translation is a salvage pathway for protein expression when mTOR is inhibited, so we analyzed a possible regulatory role of AKT on VEGF IRES activity. We found that elevated AKT activity inhibited VEGF IRES function. These results support a mechanism whereby AKT prevents VEGF IRES activity in myeloma cells during mTOR inhibition resulting in a more complete abrogation of VEGF translation, and ultimately, angiogenesis.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  • Akiri G, Nahari D, Finkelstein Y, Le SY, Elroy-Stein O, Levi BZ . (1998). Regulation of vascular endothelial growth factor (VEGF) expression is mediated by internal initiation of translation and alternative initiation of transcription. Oncogene 17: 227–236.

    Article  CAS  Google Scholar 

  • Bellamy WT, Richter L, Frutiger Y, Grogan TM . (1999). Expression of vascular endothelial growth factor and its receptors in hematopoietic malignancies. Cancer Res 59: 728–733.

    CAS  PubMed  Google Scholar 

  • Berra E, Diaz-Meco MT, Moscat J . (1998). The activation of p38 and apoptosis by the inhibition of Erk is antagonized by the phosphoinositide 3-kinase/Akt pathway. J Biol Chem 273: 10792–10797.

    Article  CAS  Google Scholar 

  • Bert AG, Grepin R, Vadas MA, Goodall GJ . (2006). Assessing IRES activity in the HIF-1α and other cellular 5′ UTRs. RNA 2: 1074–1083.

    Article  Google Scholar 

  • Bjornsti MA, Houghton PJ . (2004). The TOR pathway: a target for cancer therapy. Nat Rev Cancer 4: 335–348.

    Article  CAS  Google Scholar 

  • Chesi M, Nardini E, Brents LA, Schrock E, Ried T, Kuehl WM et al. (1997). Frequent translocation t(4;14)(p16.3;q32.3) in multiple myeloma is associated with increased expression and activating mutations of fibroblast growth factor receptor 3. Nat Genet 16: 260–264.

    Article  CAS  Google Scholar 

  • Dankbar B, Padro T, Leo R, Feldmann B, Kropff M, Mesters RM et al. (2000). Vascular endothelial growth factor and interleukin-6 in paracrine tumor-stromal cell interactions in multiple myeloma. Blood 95: 2630–2636.

    CAS  PubMed  Google Scholar 

  • Evans JR, Mitchell SA, Spriggs KA, Ostrowski J, Bomsztyk K, Ostarek D et al. (2003). Members of the poly (rC) binding protein family stimulate the activity of the c-myc internal ribosome entry segment in vitro and in vivo. Oncogene 22: 8012–8020.

    Article  Google Scholar 

  • Frost P, Moatomed F, Hoang B, Shi Y, Gera J, Yan H et al. (2004). In vivo anti-tumor effects of the mTOR inhibitor, CCI-779, against human multiple myeloma cells in a xenograft model. Blood 104: 4181–4187.

    Article  CAS  Google Scholar 

  • Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu JH et al. (2004). AKT activity determines sensitivity to mTOR inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem 279: 2737–2746.

    Article  CAS  Google Scholar 

  • Hideshima T, Nakamura N, Chauhan D, Anderson KC . (2001). Biologic sequelae of interleukin-6 induced PI3-K/Akt signaling in multiple myeloma. Oncogene 20: 5991–6000.

    Article  CAS  Google Scholar 

  • Hsu J, Shi Y, Krajewski S, Renner S, Fisher M, Reed JC et al. (2001). The AKT kinase is activated in multiple myeloma tumor cells. Blood 98: 2853–2855.

    Article  CAS  Google Scholar 

  • Huang LE, Arany Z, Livingston DM, Bunn HF . (1996). Activation of hypoxia-inducible transcription factor depends primarily upon redox-sensitive stabilization of its alpha subunit. J Biol Chem 271: 32253–32259.

    Article  CAS  Google Scholar 

  • Huez I, Creancier L, Audigier S, Gensac MC, Prats AC, Prats H . (1998). Two independent internal ribosome entry sites are involved in translation initiation of vascular endothelial growth factor mRNA. Mol Cell Biol 18: 6178–6190.

    Article  CAS  Google Scholar 

  • Hyun T, Yam A, Pece S, Xie X, Zhang J, Miki T et al. (2000). Loss of PTEN expression leading to high Akt activation in human multiple myelomas. Blood 96: 3560–3568.

    CAS  PubMed  Google Scholar 

  • Kumar S, Fonseca R, Dispenzieri A, Lacy MQ, Lust JA, Wellik L et al. (2003). Prognostic value of angiogenesis in solitary bone plasmacytoma. Blood 101: 1715–1717.

    Article  CAS  Google Scholar 

  • Kumar S, Witzig TE, Dispenzieri A, Lacy MQ, Wellik LE, Fonseca R et al. (2004). Effect of thalidomide therapy on bone marrow angiogenesis in multiple myeloma. Leukemia 18: 624–627.

    Article  CAS  Google Scholar 

  • Lang KJ, Kappel A, Goodall GJ . (2002). Hypoxia-inducible factor-1alpha mRNA contains an internal ribosome entry site that allows efficient translation during normoxia and hypoxia. Mol Biol Cell 13: 1792–1801.

    Article  CAS  Google Scholar 

  • Laughner E, Taghavi P, Chiles K, Mahon PC, Semenza GL . (2001). HER2 (neu) signaling increases the rate of hypoxia-inducible factor 1alpha (HIF-1alpha) synthesis: novel mechanism for HIF-1-mediated vascular endothelial growth factor expression. Mol Cell Biol 21: 3995–4004.

    Article  CAS  Google Scholar 

  • LeBlanc R, Catley LP, Hideshima T, Lentzsch S, Mitsiades CS, Mitsiades N et al. (2002). Proteasome inhibitor PS-341 inhibits human myeloma cell growth in vivo and prolongs survival in a murine model. Cancer Res 62: 4996–5000.

    CAS  PubMed  Google Scholar 

  • Miller DL, Dibbens JA, Damert A, Risau W, Vadas MA, Goodall GJ . (1998). The vascular endothelial growth factor mRNA contains an internal ribosome entry site. FEBS Lett 434: 417–420.

    Article  CAS  Google Scholar 

  • Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R et al. (2001). Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 98: 10314–10319.

    Article  CAS  Google Scholar 

  • Podar K, Tai YT, Davies FE, Lentzsch S, Sattler M, Hideshima T et al. (2001). Vascular endothelial growth factor triggers signaling cascades mediating multiple myeloma cell growth and migration. Blood 98: 428–435.

    Article  CAS  Google Scholar 

  • Rajkumar SV, Leong T, Roche PC, Fonseca R, Dispenzieri A, Lacy MQ et al. (2000). Prognostic value of bone marrow angiogenesis in multiple myeloma. Clin Cancer Res 6: 3111–3116.

    CAS  PubMed  Google Scholar 

  • Raught B, Gingras AC . (1999). eIF4E activity is regulated at multiple levels. Int J Biochem Cell Biol 31: 43–57.

    Article  CAS  Google Scholar 

  • Sezer O, Jakob C, Eucker J, Niemoller K, Gatz F, Wernecke K et al. (2001). Serum levels of the angiogenic cytokines basic fibroblast growth factor (bFGF), vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) in multiple myeloma. Eur J Haematol 66: 83–88.

    Article  CAS  Google Scholar 

  • Shi Y, Sharma A, Wu H, Lichtenstein A, Gera J . (2005). Cyclin D1 and c-myc internal ribosome entry site (IRES)-dependent translation is regulated by AKT activity and enhanced by rapamycin through a p38 MAPK- and ERK-dependent pathway. J Biol Chem 280: 10964–10973.

    Article  CAS  Google Scholar 

  • Shweiki D, Itin A, Soffer D, Keshet E . (1992). Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845.

    Article  CAS  Google Scholar 

  • Stoneley M, Subkhankulova T, Le Quesne JP, Coldwell MJ, Jopling CL, Belsham GJ et al. (2000). Analysis of the c-myc IRES; a potential role for cell-type specific trans-acting factors and the nuclear compartment. Nucleic Acids Res 28: 687–694.

    Article  CAS  Google Scholar 

  • Sugawara M, Matsuzuka F, Fukata S, Kuma K, Moatamed F, Haugen BR . (2002). Excessive survivin expression in thyroid lymphomas. Hum Pathol 33: 524–527.

    Article  CAS  Google Scholar 

  • Tu Y, Gardner A, Lichtenstein A . (2000). The phosphatidylinositol 3-kinase/AKT kinase pathway in multiple myeloma plasma cells: roles in cytokine-dependent survival and proliferative responses. Cancer Res 60: 6763–6770.

    CAS  PubMed  Google Scholar 

  • Yan H, Frost P, Shi Y, Hoang B, Sharma S, Fisher M et al. (2006). Mechanism by which mammalian target of rapamycin inhibitors sensitize multiple myeloma cells to dexamethasone-induced apoptosis. Cancer Res 66: 2305–2313.

    Article  CAS  Google Scholar 

  • Zong Q, Schummer M, Hood L, Morris DR . (1999). Messenger RNA translation state: the second dimension of high-throughput expression screening. Proc Natl Acad Sci USA 96: 10632–10636.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Dr Joseph Gera for technical assistance and providing reagents. We also thank Dr Greg Goodall for providing reagents. This work is supported by research funds of the Multiple Myeloma Research Foundation, and NIH Grants K01CA111623, R01CA96920 and R01CA111448 and research funds of the Veteran's Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to P Frost.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frost, P., Shi, Y., Hoang, B. et al. AKT activity regulates the ability of mTOR inhibitors to prevent angiogenesis and VEGF expression in multiple myeloma cells. Oncogene 26, 2255–2262 (2007). https://doi.org/10.1038/sj.onc.1210019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210019

Keywords

This article is cited by

Search

Quick links