Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The antiapoptotic effect of IL-6 autocrine loop in a cellular model of advanced prostate cancer is mediated by Mcl-1

Abstract

Levels of the proinflammatory cytokine interleukin-6 (IL-6) are increased in therapy-resistant prostate cancer. IL-6 has been considered a positive growth factor in late-stage prostate cancer cells and a potential target for therapeutic interference. Effects of inhibition of IL-6 on cell survival were studied in LNCaP-IL6+ cells, a model system for advanced prostate cancer, which produce IL-6. We show that the autocrine IL-6 loop is responsible for resistance to apoptosis and increased cellular levels of myeloid cell leukemia-1 (Mcl-1) protein, an antiapoptotic member of the Bcl-2 family. Treatment of cells with a chimeric anti-IL-6 antibody (CNTO 328) led to the induction of apoptosis and downregulation of Mcl-1 protein levels. Specific knockdown of Mcl-1 gene expression by small interfering RNA also yielded an increase in apoptosis of LNCaP-IL-6+ cells. Vice versa, inactivation of IL-6 autocrine loop had no influence on apoptosis levels in the absence of Mcl-1, thus suggesting this molecule as a mediator of the survival action of IL-6. Mcl-1 protein regulation by the endogenous cytokine directly involved the extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase pathway. Our data support the concept of anti-IL-6 targeted therapy in therapy-resistant prostate cancer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  • Adler HL, McCurdy MA, Kattan MW, Timme TL, Scardino PT, Thompson TC . (1999). Elevated levels of circulating interleukin-6 and transforming growth factor-beta1 in patients with metastatic prostatic carcinoma. J Urol 161: 182–187.

    Article  CAS  PubMed  Google Scholar 

  • Akira S, Taga T, Kishimoto T . (1993). Interleukin-6 in biology and medicine. Adv Immunol 54: 1–78.

    Article  CAS  PubMed  Google Scholar 

  • Borsellino N, Belldegrun A, Bonavida B . (1995). Endogenous interleukin 6 is a resistance factor for cis-diamminedichloroplatinum and etoposide-mediated cytotoxicity of human prostate carcinoma cell lines. Cancer Res 55: 4633–4639.

    CAS  PubMed  Google Scholar 

  • Borsellino N, Bonavida B, Ciliberto G, Toniatti C, Travali S, D'Alessandro N . (1999). Blocking signaling through the Gp130 receptor chain by interleukin-6 and oncostatin M inhibits PC-3 cell growth and sensitizes the tumor cells to etoposide and cisplatin-mediated cytotoxicity. Cancer 85: 134–144.

    Article  CAS  PubMed  Google Scholar 

  • Boucher MJ, Morisset J, Vachon PH, Reed JC, Laine J, Rivard N . (2000). MEK/ERK signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1 and promotes survival of human pancreatic cancer cells. J Cell Biochem 79: 355–369.

    Article  CAS  PubMed  Google Scholar 

  • Bradford M . (1978). A rapid and sensitive method for the quantitation of microgram quantities of protein using the principle of protein-dye binding. Ann Biochem 72: 248–254.

    Article  Google Scholar 

  • Chung TD, Yu JJ, Kong TA, Spiotto MT, Lin JM . (2000). Interleukin-6 activates phosphatidylinositol-3 kinase, which inhibits apoptosis in human prostate cancer cell lines. Prostate 42: 1–7.

    Article  CAS  PubMed  Google Scholar 

  • Chung TD, Yu JJ, Spiotto MT, Bartkowski M, Simons JW . (1999). Characterization of the role of IL-6 in the progression of prostate cancer. Prostate 38: 199–207.

    Article  CAS  PubMed  Google Scholar 

  • Craig RW . (2002). MCL1 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis. Leukemia 16: 444–454.

    Article  CAS  PubMed  Google Scholar 

  • Debes JD, Comuzzi B, Schmidt LJ, Dehm SM, Culig Z, Tindall DJ . (2005). p300 regulates androgen receptor-independent expression of prostate-specific antigen in prostate cancer cells treated chronically with interleukin-6. Cancer Res 65: 5965–5973.

    Article  CAS  PubMed  Google Scholar 

  • Derenne S, Monia B, Dean NM, Taylor JK, Rapp MJ, Harousseau JL et al. (2002). Antisense strategy shows that Mcl-1 rather than Bcl-2 or Bcl-x(L) is an essential survival protein of human myeloma cells. Blood 100: 194–199.

    Article  CAS  PubMed  Google Scholar 

  • Derouet M, Thomas L, Cross A, Moots RJ, Edwards SW . (2004). Granulocyte macrophage colony-stimulating factor signaling and proteasome inhibition delay neutrophil apoptosis by increasing the stability of Mcl-1. J Biol Chem 279: 26915–26921.

    Article  CAS  PubMed  Google Scholar 

  • Domina AM, Smith JH, Craig RW . (2000). Myeloid cell leukemia 1 is phosphorylated through two distinct pathways, one associated with extracellular signal-regulated kinase activation and the other with G2/M accumulation or protein phosphatase 1/2A inhibition. J Biol Chem 275: 21688–21694.

    Article  CAS  PubMed  Google Scholar 

  • Drachenberg DE, Elgamal AA, Rowbotham R, Peterson M, Murphy GP . (1999). Circulating levels of interleukin-6 in patients with hormone refractory prostate cancer. Prostate 41: 127–133.

    Article  CAS  PubMed  Google Scholar 

  • Fadeel B, Orrenius S . (2005). Apoptosis: a basic biological phenomenon with wide-ranging implications in human disease. J Intern Med 258: 479–517.

    Article  CAS  PubMed  Google Scholar 

  • Gioeli D, Mandell JW, Petroni GR, Frierson Jr HF, Weber MJ . (1999). Activation of mitogen-activated protein kinase associated with prostate cancer progression. Cancer Res 59: 279–284.

    CAS  PubMed  Google Scholar 

  • Giri D, Ozen M, Ittmann M . (2001). Interleukin-6 is an autocrine growth factor in human prostate cancer. Am J Pathol 159: 2159–2165.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gong Y, Blok LJ, Perry JE, Lindzey JK, Tindall DJ . (1995). Calcium regulation of androgen receptor expression in the human prostate cancer cell line LNCaP. Endocrinology 136: 2172–2178.

    Article  CAS  PubMed  Google Scholar 

  • Hajnoczky G, Davies E, Madesh M . (2003). Calcium signaling and apoptosis. Biochem Biophys Res Commun 304: 445–454.

    Article  CAS  PubMed  Google Scholar 

  • Hideshima T, Podar K, Chauhan D, Anderson KC . (2005). Cytokines and signal transduction. Best Pract Res Clin Haematol 18: 509–524.

    Article  CAS  PubMed  Google Scholar 

  • Hobisch A, Ramoner R, Fuchs D, Godoy-Tundidor S, Bartsch G, Klocker H et al. (2001). Prostate cancer cells (LNCaP) generated after long-term interleukin 6 (IL-6) treatment express IL-6 and acquire an IL-6 partially resistant phenotype. Clin Cancer Res 7: 2941–2948.

    CAS  PubMed  Google Scholar 

  • Hobisch A, Rogatsch H, Hittmair A, Fuchs D, Bartsch Jr G, Klocker H et al. (2000). Immunohistochemical localization of interleukin-6 and its receptor in benign, premalignant and malignant prostate tissue. J Pathol 191: 239–244.

    Article  CAS  PubMed  Google Scholar 

  • Hodge DR, Hurt EM, Farrar WL . (2005). The role of IL-6 and STAT3 in inflammation and cancer. Eur J Cancer 41: 2502–2512.

    Article  CAS  PubMed  Google Scholar 

  • Jourdan M, Veyrune JL, Vos JD, Redal N, Couderc G, Klein B . (2003). A major role for Mcl-1 antiapoptotic protein in the IL-6-induced survival of human myeloma cells. Oncogene 22: 2950–2959.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaufmann SH, Karp JE, Svingen PA, Krajewski S, Burke PJ, Gore SD et al. (1998). Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood 91: 991–1000.

    CAS  PubMed  Google Scholar 

  • Kawada M, Inoue H, Usami I, Takamoto K, Masuda T, Yamazaki Y et al. (2006). Establishment of a highly tumorigenic LNCaP cell line having inflammatory cytokine resistance. Cancer Lett 242: 46–52.

    Article  CAS  PubMed  Google Scholar 

  • Keller ET, Wanagat J, Ershler WB . (1996). Molecular and cellular biology of interleukin-6 and its receptor. Front Biosci 1: 340–357.

    Article  Google Scholar 

  • Kitada S, Andersen J, Akar S, Zapata JM, Takayama S, Krajewski S et al. (1998). Expression of apoptosis-regulating proteins in chronic lymphocytic leukemia: correlations with in vitro and in vivo chemoresponses. Blood 91: 3379–3389.

    CAS  PubMed  Google Scholar 

  • Kozopas KM, Yang T, Buchan HL, Zhou P, Craig RW . (1993). MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc Natl Acad Sci USA 90: 3516–3520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krajewska M, Krajewski S, Epstein JI, Shabaik A, Sauvageot J, Song K et al. (1996). Immunohistochemical analysis of bcl-2, bax, bcl-X, and Mcl-1 expression in prostate cancers. Am J Pathol 148: 1567–1576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krajewski S, Bodrug S, Krajewska M, Shabaik A, Gascoyne R, Berean K et al. (1995). Immunohistochemical analysis of Mcl-1 protein in human tissues. Differential regulation of Mcl-1 and Bcl-2 protein production suggests a unique role for Mcl-1 in control of programmed cell death in vivo. Am J Pathol 146: 1309–1319.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kramer G, Erdal H, Mertens HJ, Nap M, Mauermann J, Steiner G et al. (2004). Differentiation between cell death modes using measurements of different soluble forms of extracellular cytokeratin 18. Cancer Res 64: 1751–1756.

    Article  CAS  PubMed  Google Scholar 

  • Kyprianou N, English HF, Isaacs JT . (1988). Activation of a Ca2+–Mg2+-dependent endonuclease as an early event in castration-induced prostatic cell death. Prostate 13: 103–117.

    Article  CAS  PubMed  Google Scholar 

  • Le Gouill S, Podar K, Amiot M, Hideshima T, Chauhan D, Ishitsuka K et al. (2004). VEGF induces Mcl-1 up-regulation and protects multiple myeloma cells against apoptosis. Blood 104: 2886–2892.

    Article  CAS  PubMed  Google Scholar 

  • Lee SO, Lou W, Johnson CS, Trump DL, Gao AC . (2004). Interleukin-6 protects LNCaP cells from apoptosis induced by androgen deprivation through the Stat3 pathway. Prostate 60: 178–186.

    Article  CAS  PubMed  Google Scholar 

  • Li J, Hu XF, Xing PX . (2005). CNTO-328 (Centocor). Curr Opin Invest Drugs 6: 639–645.

    Google Scholar 

  • Lin DL, Whitney MC, Yao Z, Keller ET . (2001). Interleukin-6 induces androgen responsiveness in prostate cancer cells through up-regulation of androgen receptor expression. Clin Cancer Res 7: 1773–1781.

    CAS  PubMed  Google Scholar 

  • Lotem J, Sachs L . (1992). Hematopoietic cytokines inhibit apoptosis induced by transforming growth factor beta 1 and cancer chemotherapy compounds in myeloid leukemic cells. Blood 80: 1750–1757.

    CAS  PubMed  Google Scholar 

  • Lou W, Ni Z, Dyer K, Tweardy DJ, Gao AC . (2000). Interleukin-6 induces prostate cancer cell growth accompanied by activation of stat3 signaling pathway. Prostate 42: 239–242.

    Article  CAS  PubMed  Google Scholar 

  • Martikainen P, Isaacs J . (1990). Role of calcium in the programmed death of rat prostatic glandular cells. Prostate 17: 175–187.

    Article  CAS  PubMed  Google Scholar 

  • Nakashima J, Tachibana M, Horiguchi Y, Oya M, Ohigashi T, Asakura H et al. (2000). Serum interleukin 6 as a prognostic factor in patients with prostate cancer. Clin Cancer Res 6: 2702–2706.

    CAS  PubMed  Google Scholar 

  • Nam S, Buettner R, Turkson J, Kim D, Cheng JQ, Muehlbeyer S et al. (2005). Indirubin derivatives inhibit Stat3 signaling and induce apoptosis in human cancer cells. Proc Natl Acad Sci USA 102: 5998–6003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu G, Bowman T, Huang M, Shivers S, Reintgen D, Daud A et al. (2002). Roles of activated Src and Stat3 signaling in melanoma tumor cell growth. Oncogene 21: 7001–7010.

    Article  CAS  PubMed  Google Scholar 

  • Okamoto M, Lee C, Oyasu R . (1997). Interleukin-6 as a paracrine and autocrine growth factor in human prostatic carcinoma cells in vitro. Cancer Res 57: 141–146.

    CAS  PubMed  Google Scholar 

  • Orrenius S, Zhivotovsky B, Nicotera P . (2003). Regulation of cell death: the calcium–apoptosis link. Nat Rev Mol Cell Biol 4: 552–565.

    Article  CAS  PubMed  Google Scholar 

  • Pu YS, Hour TC, Chuang SE, Cheng AL, Lai MK, Kuo ML . (2004). Interleukin-6 is responsible for drug resistance and anti-apoptotic effects in prostatic cancer cells. Prostate 60: 120–129.

    Article  CAS  PubMed  Google Scholar 

  • Puthier D, Derenne S, Barille S, Moreau P, Harousseau JL, Bataille R et al. (1999). Mcl-1 and Bcl-xL are co-regulated by IL-6 in human myeloma cells. Br J Haematol 107: 392–395.

    Article  CAS  PubMed  Google Scholar 

  • Raje N, Kumar S, Hideshima T, Roccaro A, Ishitsuka K, Yasui H et al. (2005). Seliciclib (CYC202 or R-roscovitine), a small-molecule cyclin-dependent kinase inhibitor, mediates activity via down-regulation of Mcl-1 in multiple myeloma. Blood 106: 1042–1047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royuela M, Arenas MI, Bethencourt FR, Sanchez-Chapado M, Fraile B, Paniagua R . (2001). Immunoexpressions of p21, Rb, mcl-1 and bad gene products in normal, hyperplastic and carcinomatous human prostates. Eur Cytokine Netw 12: 654–663.

    CAS  PubMed  Google Scholar 

  • Royuela M, Arenas MI, Bethencourt FR, Sanchez-Chapado M, Fraile B, Paniagua R . (2002). Regulation of proliferation/apoptosis equilibrium by mitogen-activated protein kinases in normal, hyperplastic, and carcinomatous human prostate. Hum Pathol 33: 299–306.

    Article  CAS  PubMed  Google Scholar 

  • Rubinfeld H, Seger R . (2005). The ERK cascade: a prototype of MAPK signaling. Mol Biotechnol 31: 151–174.

    Article  CAS  PubMed  Google Scholar 

  • Selzer E, Thallinger C, Hoeller C, Oberkleiner P, Wacheck V, Pehamberger H et al. (2002). Betulinic acid-induced Mcl-1 expression in human melanoma – mode of action and functional significance. Mol Med 8: 877–884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada K, Nakamura M, Ishida E, Kishi M, Yonehara S, Konishi N . (2002). Contributions of mitogen-activated protein kinase and nuclear factor kappa B to N-(4-hydroxyphenyl)retinamide-induced apoptosis in prostate cancer cells. Mol Carcinogen 35: 127–137.

    Article  CAS  Google Scholar 

  • Siegall CB, Schwab G, Nordan RP, FitzGerald DJ, Pastan I . (1990). Expression of the interleukin 6 receptor and interleukin 6 in prostate carcinoma cells. Cancer Res 50: 7786–7788.

    CAS  PubMed  Google Scholar 

  • Siegsmund MJ, Yamazaki H, Pastan I . (1994). Interleukin 6 receptor mRNA in prostate carcinomas and benign prostate hyperplasia. J Urol 151: 1396–1399.

    Article  CAS  PubMed  Google Scholar 

  • Smith PC, Hobisch A, Lin DL, Culig Z, Keller ET . (2001). Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev 12: 33–40.

    Article  CAS  PubMed  Google Scholar 

  • Smith PC, Keller ET . (2001). Anti-interleukin-6 monoclonal antibody induces regression of human prostate cancer xenografts in nude mice. Prostate 48: 47–53.

    Article  CAS  PubMed  Google Scholar 

  • Sridhar SS, Hedley D, Siu LL . (2005). Raf kinase as a target for anticancer therapeutics. Mol Cancer Ther 4: 677–685.

    Article  CAS  PubMed  Google Scholar 

  • Steiner H, Berger AP, Godoy-Tundidor S, Bjartell A, Lilja H, Bartsch G et al. (2004). An autocrine loop for vascular endothelial growth factor is established in prostate cancer cells generated after prolonged treatment with interleukin 6. Eur J Cancer 40: 1066–1072.

    Article  CAS  PubMed  Google Scholar 

  • Steiner H, Caarretta IT, Moser PL, Berger AP, Bektic J, Dietrich H et al. (2006). Regulation of growth of prostate cancer cells selected in the presence of interleukin-6 by the anti-interleukin-6 antibody CNTO 328. (in press).

  • Steiner H, Godoy-Tundidor S, Rogatsch H, Berger AP, Fuchs D, Comuzzi B et al. (2003). Accelerated in vivo growth of prostate tumors that up-regulate interleukin-6 is associated with reduced retinoblastoma protein expression and activation of the mitogen-activated protein kinase pathway. Am J Pathol 162: 655–663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trikha M, Corringham R, Klein B, Rossi JF . (2003). Targeted anti-interleukin-6 monoclonal antibody therapy for cancer: a review of the rationale and clinical evidence. Clin Cancer Res 9: 4653–4665.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Twillie DA, Eisenberger MA, Carducci MA, Hseih WS, Kim WY, Simons JW . (1995). Interleukin-6: a candidate mediator of human prostate cancer morbidity. Urology 45: 542–549.

    Article  CAS  PubMed  Google Scholar 

  • Wallner L, Dai J, Escara-Wilke J, Zhang J, Yao Z, Lu Y et al. (2006). Inhibition of interleukin-6 with CNTO 328, an anti-interleukin-6 monoclonal antibody, inhibits conversion of androgen-dependent prostate cancer to an androgen-independent phenotype in orchiectomized mice. Cancer Res 66: 3087–3095.

    Article  CAS  PubMed  Google Scholar 

  • Yonish-Rouach E, Resnitzky D, Lotem J, Sachs L, Kimchi A, Oren M . (1991). Wild-type p53 induces apoptosis of myeloid leukaemic cells that is inhibited by interleukin-6. Nature 352: 345–347.

    Article  CAS  PubMed  Google Scholar 

  • Yoon S, Seger R . (2006). The extracellular signal-regulated kinase: multiple substrates regulate diverse cellular functions. Growth Factors 24: 21–44.

    Article  CAS  PubMed  Google Scholar 

  • Zelivianski S, Spellman M, Kellerman M, Kakitelashvilli V, Zhou XW, Lugo E et al. (2003). ERK inhibitor PD98059 enhances docetaxel-induced apoptosis of androgen-independent human prostate cancer cells. Int J Cancer 107: 478–485.

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Gojo I, Fenton RG . (2002). Myeloid cell factor-1 is a critical survival factor for multiple myeloma. Blood 99: 1885–1893.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge G Sierek for expert technical assistance, M Puhr, K Malinowska and Drs G Bartsch and P Berger for their helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Z Culig.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cavarretta, I., Neuwirt, H., Untergasser, G. et al. The antiapoptotic effect of IL-6 autocrine loop in a cellular model of advanced prostate cancer is mediated by Mcl-1. Oncogene 26, 2822–2832 (2007). https://doi.org/10.1038/sj.onc.1210097

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210097

Keywords

This article is cited by

Search

Quick links