Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Mechanisms of translational deregulation in human tumors and therapeutic intervention strategies

Abstract

Analysis of the recurrent genetic aberrations present in human tumors provides insight into how normal cells escape appropriate proliferation and survival cues. Commonly mutated genes encode proteins that monitor DNA damage (e.g., p53), proteins that regulate the cell cycle (such as Rb), and proteins that regulate signal transduction pathways (such as APC, PTEN and Ras). Analysis of the relevant targets and downstream events of these genes in normal and tumor cells will clearly highlight important pathways for tumorigenesis. However, more infrequent mutations are also informative in defining events critical for the process of tumorigenesis, and often delineate important pathways lying downstream of commonly mutated oncogenes and tumor suppressors. Together, these studies have led to the conclusion that deregulated protein synthesis plays an important role in human cancer. This review will discuss the evidence implicating mRNA translation as an important downstream consequence of signal transduction pathways initiated by mutated oncogenes and tumor suppressors, as well as additional genetic findings implicating the importance of global and specific translational control in human cancer. It will also discuss therapeutic strategies that take advantage of differences in translational regulation between normal and tumor cells.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  • Alessi DR, Sakamoto K, Bayascas JR . (2006). Lkb1-dependent signaling pathways. Annu Rev Biochem 75: 137–163.

    Article  CAS  PubMed  Google Scholar 

  • Amsterdam A, Sadler KC, Lai K, Farrington S, Bronson RT, Lees JA et al. (2004). Many ribosomal protein genes are cancer genes in zebrafish. PLoS Biol 2: E139.

    PubMed  PubMed Central  Google Scholar 

  • Anand N, Murthy S, Amann G, Wernick M, Porter LA, Cukier IH et al. (2002). Protein elongation factor EEF1A2 is a putative oncogene in ovarian cancer. Nat Genet 31: 301–305.

    CAS  PubMed  Google Scholar 

  • Avdulov S, Li S, Van M, Burrichter D, Peterson M, Perlman DM et al. (2004). Activation of translation complex eIF4F is essential for the genesis and maintenance of the malignant phenotype in human mammary epithelial cells. Cancer Cell 5: 553–563.

    CAS  PubMed  Google Scholar 

  • Ayala G, Satoh T, Li R, Shalev M, Gdor Y, Aguilar-Cordova E et al. (2006). Biological response determinants in HSV-tk + ganciclovir gene therapy for prostate cancer. Mol Ther 13: 716–728.

    CAS  PubMed  Google Scholar 

  • Bader AG, Felts KA, Jiang N, Chang HW, Vogt PK . (2003). Y box-binding protein 1 induces resistance to oncogenic transformation by the phosphatidylinositol 3-kinase pathway. Proc Natl Acad Sci USA 100: 12384–12389.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bader AG, Vogt PK . (2005). Inhibition of protein synthesis by Y box-binding protein 1 blocks oncogenic cell transformation. Mol Cell Biol 25: 2095–2106.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balachandran S, Barber GN . (2000). Vesicular stomatitis virus (VSV) therapy of tumors. IUBMB Life 50: 135–138.

    CAS  PubMed  Google Scholar 

  • Balachandran S, Barber GN . (2004). Defective translational control facilitates vesicular stomatitis virus oncolysis. Cancer Cell 5: 51–65.

    CAS  PubMed  Google Scholar 

  • Barlund M, Forozan F, Kononen J, Bubendorf L, Chen Y, Bittner ML et al. (2000). Detecting activation of ribosomal protein S6 kinase by complementary DNA and tissue microarray analysis. J Natl Cancer Inst 92: 1252–1259.

    CAS  PubMed  Google Scholar 

  • Bauer C, Diesinger I, Brass N, Steinhart H, Iro H, Meese EU . (2001). Translation initiation factor eIF-4G is immunogenic, overexpressed, and amplified in patients with squamous cell lung carcinoma. Cancer 92: 822–829.

    CAS  PubMed  Google Scholar 

  • Bentwich I . (2005). Prediction and validation of microRNAs and their targets. FEBS Lett 579: 5904–5910.

    CAS  PubMed  Google Scholar 

  • Beretta L, Gingras AC, Svitkin YV, Hall MN, Sonenberg N . (1996). Rapamycin blocks the phosphorylation of 4E-BP1 and inhibits cap-dependent initiation of translation. EMBO J 15: 658–664.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beuvink I, Boulay A, Fumagalli S, Zilbermann F, Ruetz S, O'Reilly T et al. (2005). The mTOR inhibitor RAD001 sensitizes tumor cells to DNA-damaged induced apoptosis through inhibition of p21 translation. Cell 120: 747–759.

    CAS  PubMed  Google Scholar 

  • Bilanges B, Argonza-Barrett R, Kolesnichenko M, Nair M, Chen M, Stokoe D . (2006). TSC1/TSC2 control mRNA translation in a mTOR dependent and independent manner. submitted.

  • Blasco MA, Lee H-W, Hande MP, Samper E, Lansdorp PM, DePinho RA et al. (1997). Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34.

    CAS  PubMed  Google Scholar 

  • Brugarolas J, Lei K, Hurley RL, Manning BD, Reiling JH, Hafen E et al. (2004). Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18: 2893–2904.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Buttitta F, Martella C, Barassi F, Felicioni L, Salvatore S, Rosini S et al. (2005). Int6 expression can predict survival in early-stage non-small cell lung cancer patients. Clin Cancer Res 11: 3198–3204.

    CAS  PubMed  Google Scholar 

  • Byrnes K, White S, Chu Q, Meschonat C, Yu H, Johnson LW et al. (2006). High eIF4E, VEGF, and microvessel density in stage I to III breast cancer. Ann Surg 243: 684–690 discussion 691–692.

    PubMed  PubMed Central  Google Scholar 

  • Cai DX, James CD, Scheithauer BW, Couch FJ, Perry A . (2001). PS6K amplification characterizes a small subset of anaplastic meningiomas. Am J Clin Pathol 115: 213–218.

    CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM . (2006). MicroRNA signatures in human cancers. Nat Rev Cancer 6: 857–866.

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E et al. (2002). Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc Natl Acad Sci USA 99: 15524–15529.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD et al. (2004). MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA 101: 11755–11760.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen CN, Hsieh FJ, Cheng YM, Lee PH, Chang KJ . (2004). Expression of eukaryotic initiation factor 4E in gastric adenocarcinoma and its association with clinical outcome. J Surg Oncol 86: 22–27.

    CAS  PubMed  Google Scholar 

  • Chen Y, Knosel T, Kristiansen G, Pietas A, Garber ME, Matsuhashi S et al. (2003). Loss of PDCD4 expression in human lung cancer correlates with tumour progression and prognosis. J Pathol 200: 640–646.

    CAS  PubMed  Google Scholar 

  • Choesmel V, Bacqueville D, Rouquette J, Noaillac-Depeyre J, Fribourg S, Cretien A et al. (2006). Impaired ribosome biogenesis in Diamond-Blackfan anemia. Blood 109: 1275–1283.

    PubMed  Google Scholar 

  • Cimmino A, Calin GA, Fabbri M, Iorio MV, Ferracin M, Shimizu M et al. (2005). miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA 102: 13944–13949.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cmejlova J, Dolezalova L, Pospisilova D, Petrtylova K, Petrak J, Cmejla R . (2006). Translational efficiency in patients with Diamond-Blackfan anemia. Haematologica 91: 1456–1464.

    CAS  PubMed  Google Scholar 

  • Costinean S, Zanesi N, Pekarsky Y, Tili E, Volinia S, Heerema N et al. (2006). Pre-B cell proliferation and lymphoblastic leukemia/high-grade lymphoma in E(mu)-miR155 transgenic mice. Proc Natl Acad Sci USA 103: 7024–7029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couch FJ, Wang XY, Wu GJ, Qian J, Jenkins RB, James CD . (1999). Localization of PS6 K to chromosomal region 17q23 and determination of its amplification in breast cancer. Cancer Res 59: 1408–1411.

    CAS  PubMed  Google Scholar 

  • Cramton SE, Laski FA . (1994). string of pearls encodes Drosophila ribosomal protein S2, has Minute-like characteristics, and is required during oogenesis. Genetics 137: 1039–1048.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Culjkovic B, Topisirovic I, Skrabanek L, Ruiz-Gutierrez M, Borden KL . (2005). eIF4E promotes nuclear export of cyclin D1 mRNAs via an element in the 3′UTR. J Cell Biol 169: 245–256.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cummins JM, Velculescu VE . (2006). Implications of micro-RNA profiling for cancer diagnosis. Oncogene 25: 6220–6227.

    CAS  PubMed  Google Scholar 

  • Dai MS, Shi D, Jin Y, Sun XX, Zhang Y, Grossman SR et al. (2006). Regulation of the MDM2-p53 pathway by ribosomal protein L11 involves a post-ubiquitination mechanism. J Biol Chem 281: 24304–24313.

    CAS  PubMed  Google Scholar 

  • De Benedetti A, Graff JR . (2004). eIF-4E expression and its role in malignancies and metastases. Oncogene 23: 3189–3199.

    CAS  PubMed  Google Scholar 

  • De Benedetti A, Harris AL . (1999). eIF4E expression in tumors: its possible role in progression of malignancies. Int J Biochem Cell Biol 31: 59–72.

    CAS  PubMed  Google Scholar 

  • DeFatta RJ, Li Y, De Benedetti A . (2002). Selective killing of cancer cells based on translational control of a suicide gene. Cancer Gene Ther 9: 573–578.

    CAS  PubMed  Google Scholar 

  • DeGraffenried LA, Fulcher L, Friedrichs WE, Grunwald V, Ray RB, Hidalgo M . (2004). Reduced PTEN expression in breast cancer cells confers susceptibility to inhibitors of the PI3 kinase/Akt pathway. Ann Oncol 15: 1510–1516.

    CAS  PubMed  Google Scholar 

  • Dez C, Tollervey D . (2004). Ribosome synthesis meets the cell cycle. Curr Opin Microbiol 7: 631–637.

    CAS  PubMed  Google Scholar 

  • Dizin E, Gressier C, Magnard C, Ray H, Decimo D, Ohlmann T et al. (2006). BRCA1 interacts with poly(A)-binding protein: implication of BRCA1 in translation regulation. J Biol Chem 281: 24236–24246.

    CAS  PubMed  Google Scholar 

  • Dong Z, Liu LH, Han B, Pincheira R, Zhang JT . (2004). Role of eIF3 p170 in controlling synthesis of ribonucleotide reductase M2 and cell growth. Oncogene 23: 3790–3801.

    CAS  PubMed  Google Scholar 

  • Dong Z, Zhang JT . (2003). EIF3 p170, a mediator of mimosine effect on protein synthesis and cell cycle progression. Mol Biol Cell 14: 3942–3951.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Z, Zhang JT . (2006). Initiation factor eIF3 and regulation of mRNA translation, cell growth, and cancer. Crit Rev Oncol Hematol 59: 169–180.

    PubMed  Google Scholar 

  • Donze O, Jagus R, Koromilas AE, Hershey JW, Sonenberg N . (1995). Abrogation of translation initiation factor eIF-2 phosphorylation causes malignant transformation of NIH 3T3 cells. EMBO J 14: 3828–3834.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dorrello NV, Peschiaroli A, Guardavaccaro D, Colburn NH, Sherman NE, Pagano M . (2006). S6K1- and betaTRCP-mediated degradation of PDCD4 promotes protein translation and cell growth. Science 314: 467–471.

    CAS  PubMed  Google Scholar 

  • Draptchinskaia N, Gustavsson P, Andersson B, Pettersson M, Willig TN, Dianzani I et al. (1999). The gene encoding ribosomal protein S19 is mutated in Diamond-Blackfan anaemia. Nat Genet 21: 169–175.

    CAS  PubMed  Google Scholar 

  • Dumont FJ, Staruch MJ, Koprak SL, Melino MR, Sigal NH . (1990). Distinct mechanisms of suppression of murine T cell activation by the related macrolides FK-506 and rapamycin. J Immunol 144: 251–258.

    CAS  PubMed  Google Scholar 

  • Duncan MR, Stanish SM, Cox DC . (1978). Differential sensitivity of normal and transformed human cells to reovirus infection. J Virol 28: 444–449.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Easton JB, Houghton PJ . (2006). mTOR and cancer therapy. Oncogene 25: 6436–6446.

    CAS  PubMed  Google Scholar 

  • Eberle J, Krasagakis K, Orfanos CE . (1997). Translation initiation factor eIF-4A1 mRNA is consistently overexpressed in human melanoma cells in vitro. Int J Cancer 71: 396–401.

    CAS  PubMed  Google Scholar 

  • Eng C . (2003). PTEN: one gene, many syndromes. Hum Mutat 22: 183–198.

    CAS  PubMed  Google Scholar 

  • Eng CP, Sehgal SN, Vezina C . (1984). Activity of rapamycin (AY-22 989) against transplanted tumors. J Antibiot (Tokyo) 37: 1231–1237.

    CAS  Google Scholar 

  • Eshleman JS, Carlson BL, Mladek AC, Kastner BD, Shide KL, Sarkaria JN . (2002). Inhibition of the mammalian target of rapamycin sensitizes U87 xenografts to fractionated radiation therapy. Cancer Res 62: 7291–7297.

    CAS  PubMed  Google Scholar 

  • Esquela-Kerscher A, Slack FJ . (2006). Oncomirs - microRNAs with a role in cancer. Nat Rev Cancer 6: 259–269.

    CAS  PubMed  Google Scholar 

  • Evdokimova V, Ruzanov P, Anglesio MS, Sorokin AV, Ovchinnikov LP, Buckley J et al. (2006). Akt-Mediated YB-1 Phosphorylation Activates Translation of Silent mRNA Species. Mol Cell Biol 26: 277–292.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flygare J, Aspesi A, Bailey JC, Miyake K, Caffrey JM, Karlsson S et al. (2006). Human RPS19, the gene mutated in Diamond Blackfan anemia, encodes a ribosomal protein required for the maturation of 40S ribosomal subunits. Blood 109: 980–986.

    PubMed  Google Scholar 

  • Fukuchi-Shimogori T, Ishii I, Kashiwagi K, Mashiba H, Ekimoto H, Igarashi K . (1997). Malignant transformation by overproduction of translation initiation factor eIF4G. Cancer Res 57: 5041–5044.

    CAS  PubMed  Google Scholar 

  • Galanis E, Buckner JC, Maurer MJ, Kreisberg JI, Ballman K, Boni J et al. (2005). Phase II trial of temsirolimus (CCI–779) in recurrent glioblastoma multiforme: a North Central Cancer Treatment Group Study. J Clin Oncol 23: 5294–5304.

    CAS  PubMed  Google Scholar 

  • Gazda HT, Kho AT, Sanoudou D, Zaucha JM, Kohane IS, Sieff CA et al. (2006). Defective ribosomal protein gene expression alters transcription, translation, apoptosis, and oncogenic pathways in Diamond-Blackfan anemia. Stem Cells 24: 2034–2044.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gera JF, Mellinghoff IK, Shi Y, Rettig MB, Tran C, Hsu JH et al. (2004). AKT activity determines sensitivity to mammalian target of rapamycin (mTOR) inhibitors by regulating cyclin D1 and c-myc expression. J Biol Chem 279: 2737–2746.

    CAS  PubMed  Google Scholar 

  • Gill T, Cai T, Aulds J, Wierzbicki S, Schmitt ME . (2004). RNase MRP cleaves the CLB2 mRNA to promote cell cycle progression: novel method of mRNA degradation. Mol Cell Biol 24: 945–953.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gingras AC, Raught B, Sonenberg N . (2001). Regulation of translation initiation by FRAP/mTOR. Genes Dev 15: 807–826.

    CAS  PubMed  Google Scholar 

  • Graff JR, Zimmer SG . (2003). Translational control and metastatic progression: enhanced activity of the mRNA cap-binding protein eIF-4E selectively enhances translation of metastasis-related mRNAs. Clin Exp Metastasis 20: 265–273.

    CAS  PubMed  Google Scholar 

  • Gregory MA, Petkovic H, Lill RE, Moss SJ, Wilkinson B, Gaisser S et al. (2005). Mutasynthesis of rapamycin analogues through the manipulation of a gene governing starter unit biosynthesis. Angew Chem Int Ed Engl 44: 4757–4760.

    CAS  PubMed  Google Scholar 

  • Grolleau A, Bowman J, Pradet-Balade B, Puravs E, Hanash S, Garcia-Sanz JA et al. (2002). Global and specific translational control by rapamycin in T cells uncovered by microarrays and proteomics. J Biol Chem 277: 22175–22184.

    CAS  PubMed  Google Scholar 

  • Guertin DA, Stevens DM, Thoreen CC, Burds AA, Kalaany NY, Moffat J et al. (2006). Ablation in Mice of the mTORC Components raptor, rictor, or mLST8 Reveals that mTORC2 Is Required for Signaling to Akt-FOXO and PKCalpha, but Not S6K1. Dev Cell 11: 859–871.

    CAS  PubMed  Google Scholar 

  • Hahn-Windgassen A, Nogueira V, Chen CC, Skeen JE, Sonenberg N, Hay N . (2005). Akt activates the mammalian target of rapamycin by regulating cellular ATP level and AMPK activity. J Biol Chem 280: 32081–32089.

    CAS  PubMed  Google Scholar 

  • Handley TP, McCaul JA, Ogden GR . (2006). Dyskeratosis congenita. Oral Oncol 42: 331–336.

    CAS  PubMed  Google Scholar 

  • Haydon MS, Googe JD, Sorrells DS, Ghali GE, Li BD . (2000). Progression of eIF4e gene amplification and overexpression in benign and malignant tumors of the head and neck. Cancer 88: 2803–2810.

    CAS  PubMed  Google Scholar 

  • He L, Thomson JM, Hemann MT, Hernando-Monge E, Mu D, Goodson S et al. (2005). A microRNA polycistron as a potential human oncogene. Nature 435: 828–833.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hershey JWB, Merrick WC . (2000). Pathway, mechanism of initiation of protein synthesis. In: Sonenberg N, Hershey JWB, Mathews MB (eds). Translational Control of Gene Expression. Cold Spring Harbor Laboratory Press: Cold Spring Hourbor, NY, USA, pp 33–88.

    Google Scholar 

  • Hilliard A, Hilliard B, Zheng SJ, Sun H, Miwa T, Song W et al. (2006). Translational regulation of autoimmune inflammation and lymphoma genesis by programmed cell death 4. J Immunol 177: 8095–8102.

    CAS  PubMed  Google Scholar 

  • Hirasawa K, Nishikawa SG, Norman KL, Alain T, Kossakowska A, Lee PW . (2002). Oncolytic reovirus against ovarian and colon cancer. Cancer Res 62: 1696–1701.

    CAS  PubMed  Google Scholar 

  • Hirasawa K, Nishikawa SG, Norman KL, Coffey MC, Thompson BG, Yoon CS et al. (2003). Systemic reovirus therapy of metastatic cancer in immune-competent mice. Cancer Res 63: 348–353.

    CAS  PubMed  Google Scholar 

  • Holland EC, Celestino J, Dai C, Schaefer L, Sawaya RE, Fuller GN . (2000). Combined activation of Ras and Akt in neural progenitors induces glioblastoma formation in mice. Nat Genet 25: 55–57.

    CAS  PubMed  Google Scholar 

  • Holz MK, Ballif BA, Gygi SP, Blenis J . (2005). mTOR and S6K1 Mediate Assembly of the Translation Preinitiation Complex through Dynamic Protein Interchange and Ordered Phosphorylation Events. Cell 123: 569–580.

    CAS  PubMed  Google Scholar 

  • Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S et al. (2005). MicroRNA gene expression deregulation in human breast cancer. Cancer Res 65: 7065–7070.

    CAS  PubMed  Google Scholar 

  • Jansen AP, Camalier CE, Stark C, Colburn NH . (2004). Characterization of programmed cell death 4 in multiple human cancers reveals a novel enhancer of drug sensitivity. Mol Cancer Ther 3: 103–110.

    CAS  PubMed  Google Scholar 

  • Jefferies HB, Fumagalli S, Dennis PB, Reinhard C, Pearson RB, Thomas G . (1997). Rapamycin suppresses 5′TOP mRNA translation through inhibition of p70s6k. EMBO J 16: 3693–3704.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jefferies HB, Reinhard C, Kozma SC, Thomas G . (1994). Rapamycin selectively represses translation of the ‘polypyrimidine tract’ mRNA family. Proc Natl Acad Sci USA 91: 4441–4445.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson SM, Grosshans H, Shingara J, Byrom M, Jarvis R, Cheng A et al. (2005). RAS is regulated by the let-7 microRNA family. Cell 120: 635–647.

    CAS  PubMed  Google Scholar 

  • Kaufman RJ . (2000). Double-stranded RNA-activated protein kinase PKR. In: Sonenberg N, Hershey JWB, Mathews MB (eds). Translational Control of Gene Expression. Cold Spring Harbor Laboratory Press: Cold Spring Harbor, NY, pp 503–528.

    Google Scholar 

  • Kent OA, Mendell JT . (2006). A small piece in the cancer puzzle: microRNAs as tumor suppressors and oncogenes. Oncogene 25: 6188–6196.

    CAS  PubMed  Google Scholar 

  • Kevil CG, De Benedetti A, Payne DK, Coe LL, Laroux FS, Alexander JS . (1996). Translational regulation of vascular permeability factor by eukaryotic initiation factor 4E: implications for tumor angiogenesis. Int J Cancer 65: 785–790.

    CAS  PubMed  Google Scholar 

  • Kitahara O, Furukawa Y, Tanaka T, Kihara C, Ono K, Yanagawa R et al. (2001). Alterations of gene expression during colorectal carcinogenesis revealed by cDNA microarrays after laser-capture microdissection of tumor tissues and normal epithelia. Cancer Res 61: 3544–3549.

    CAS  PubMed  Google Scholar 

  • Koga Y, Ohga S, Nomura A, Takada H, Hara T . (2006). Reduced gene expression of clustered ribosomal proteins in Diamond-Blackfan anemia patients without RPS19 gene mutations. J Pediatr Hematol Oncol 28: 355–361.

    CAS  PubMed  Google Scholar 

  • Kongsuwan K, Yu Q, Vincent A, Frisardi MC, Rosbash M, Lengyel JA et al. (1985). A Drosophila Minute gene encodes a ribosomal protein. Nature 317: 555–558.

    CAS  PubMed  Google Scholar 

  • Kwiatkowski DJ . (2003). Tuberous Sclerosis: from Tubers to mTOR. Ann Hum Genet 67: 87–96.

    CAS  PubMed  Google Scholar 

  • Larsson O, Perlman DM, Fan D, Reilly CS, Peterson M, Dahlgren C et al. (2006). Apoptosis resistance downstream of eIF4E: posttranscriptional activation of an anti-apoptotic transcript carrying a consensus hairpin structure. Nucleic Acids Res 34: 4375–4386.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Law M, Forrester E, Chytil A, Corsino P, Green G, Davis B et al. (2006). Rapamycin disrupts cyclin/cyclin-dependent kinase/p21/proliferating cell nuclear antigen complexes and cyclin D1 reverses rapamycin action by stabilizing these complexes. Cancer Res 66: 1070–1080.

    CAS  PubMed  Google Scholar 

  • Lazaris-Karatzas A, Montine KS, Sonenberg N . (1990). Malignant transformation by a eukaryotic initiation factor subunit that binds to mRNA 5′ cap. Nature 345: 544–547.

    CAS  PubMed  Google Scholar 

  • Leslie NR, Downes CP . (2002). PTEN: The down side of PI 3-kinase signalling. Cell Signal 14: 285–295.

    CAS  PubMed  Google Scholar 

  • Li R, Wang H, Bekele BN, Yin Z, Caraway NP, Katz RL et al. (2006). Identification of putative oncogenes in lung adenocarcinoma by a comprehensive functional genomic approach. Oncogene 25: 2628–2635.

    CAS  PubMed  Google Scholar 

  • Li S, Takasu T, Perlman DM, Peterson MS, Burrichter D, Avdulov S et al. (2003). Translation factor eIF4E rescues cells from Myc-dependent apoptosis by inhibiting cytochrome c release. J Biol Chem 278: 3015–3022.

    CAS  PubMed  Google Scholar 

  • Liu JM, Ellis SR . (2006). Ribosomes and marrow failure: coincidental association or molecular paradigm? Blood 107: 4583–4588.

    CAS  PubMed  Google Scholar 

  • Lynch M, Fitzgerald C, Johnston KA, Wang S, Schmidt EV . (2004). Activated eIF4E-binding protein slows G1 progression and blocks transformation by c-myc without inhibiting cell growth. J Biol Chem 279: 3327–3339.

    CAS  PubMed  Google Scholar 

  • Majumder PK, Febbo PG, Bikoff R, Berger R, Xue Q, McMahon LM et al. (2004). mTOR inhibition reverses Akt-dependent prostate intraepithelial neoplasia through regulation of apoptotic and HIF-1-dependent pathways. Nat Med 10: 594–601.

    CAS  PubMed  Google Scholar 

  • Mamane Y, Petroulakis E, LeBacquer O, Sonenberg N . (2006). mTOR, translation initiation and cancer. Oncogene 25: 6416–6422.

    CAS  PubMed  Google Scholar 

  • Mamane Y, Petroulakis E, Martineau Y, Sato TA, Larsson O, Rajasekhar VK et al. (2007). Epigenetic activation of a subset of mRNAs by eIF4E explains its effects on cell proliferation. PLoS ONE 2: e242.

    PubMed  PubMed Central  Google Scholar 

  • Marechal V, Elenbaas B, Piette J, Nicolas JC, Levine AJ . (1994). The ribosomal L5 protein is associated with mdm-2 and mdm-2-p53 complexes. Mol Cell Biol 14: 7414–7420.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Martin ME, Perez MI, Redondo C, Alvarez MI, Salinas M, Fando JL . (2000). 4E binding protein 1 expression is inversely correlated to the progression of gastrointestinal cancers. Int J Biochem Cell Biol 32: 633–642.

    CAS  PubMed  Google Scholar 

  • Mathis JM, Williams BJ, Sibley DA, Carroll JL, Li J, Odaka Y et al. (2006). Cancer-specific targeting of an adenovirus-delivered herpes simplex virus thymidine kinase suicide gene using translational control. J Gene Med 8: 1105–1120.

    CAS  PubMed  Google Scholar 

  • Matsson H, Davey EJ, Frojmark AS, Miyake K, Utsugisawa T, Flygare J et al. (2006). Erythropoiesis in the Rps19 disrupted mouse: Analysis of erythropoietin response and biochemical markers for Diamond-Blackfan anemia. Blood Cells Mol Dis 36: 259–264.

    CAS  PubMed  Google Scholar 

  • Matsumoto K, Bay B-H . (2005). Significance of the Y-box proteins in human cancers. J Mol Genetic Med 1: 11–17.

    CAS  Google Scholar 

  • Mayer C, Grummt I . (2006). Ribosome biogenesis and cell growth: mTOR coordinates transcription by all three classes of nuclear RNA polymerases. Oncogene 25: 6384–6391.

    CAS  PubMed  Google Scholar 

  • McManus EJ, Alessi DR . (2002). TSC1-TSC2: a complex tale of PKB-mediated S6K regulation. Nat Cell Biol 4: E214–E216.

    CAS  PubMed  Google Scholar 

  • Michael MZ, SM OC, van Holst Pellekaan NG, Young GP, James RJ . (2003). Reduced accumulation of specific microRNAs in colorectal neoplasia. Mol Cancer Res 1: 882–891.

    CAS  PubMed  Google Scholar 

  • Mochizuki Y, He J, Kulkarni S, Bessler M, Mason PJ . (2004). Mouse dyskerin mutations affect accumulation of telomerase RNA and small nucleolar RNA, telomerase activity, and ribosomal RNA processing. Proc Natl Acad Sci USA 101: 10756–10761.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morley SJ . (2001). The regulation of eIF4F during cell growth and cell death. Prog Mol Subcell Biol 27: 1–37.

    CAS  PubMed  Google Scholar 

  • Nekrasov MP, Ivshina MP, Chernov KG, Kovrigina EA, Evdokimova VM, Thomas AA et al. (2003). The mRNA-binding protein YB-1 (p50) prevents association of the eukaryotic initiation factor eIF4G with mRNA and inhibits protein synthesis at the initiation stage. J Biol Chem 278: 13936–13943.

    CAS  PubMed  Google Scholar 

  • Neshat MS, Mellinghoff IK, Tran C, Stiles B, Thomas G, Petersen R et al. (2001). Enhanced sensitivity of PTEN-deficient tumors to inhibition of FRAP/mTOR. Proc Natl Acad Sci USA 98: 10314–10319.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Noh WC, Mondesire WH, Peng J, Jian W, Zhang H, Dong J et al. (2004). Determinants of rapamycin sensitivity in breast cancer cells. Clin Cancer Res 10: 1013–1023.

    CAS  PubMed  Google Scholar 

  • Norman KL, Coffey MC, Hirasawa K, Demetrick DJ, Nishikawa SG, DiFrancesco LM et al. (2002). Reovirus oncolysis of human breast cancer. Hum Gene Ther 13: 641–652.

    CAS  PubMed  Google Scholar 

  • Norman KL, Hirasawa K, Yang AD, Shields MA, Lee PW . (2004). Reovirus oncolysis: the Ras/RalGEF/p38 pathway dictates host cell permissiveness to reovirus infection. Proc Natl Acad Sci USA 101: 11099–11104.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nupponen NN, Isola J, Visakorpi T . (2000). Mapping the amplification of EIF3S3 in breast and prostate cancer. Genes Chromosomes Cancer 28: 203–210.

    CAS  PubMed  Google Scholar 

  • Okamoto H, Yasui K, Zhao C, Arii S, Inazawa J . (2003). PTK2 and EIF3S3 genes may be amplification targets at 8q23-q24 and are associated with large hepatocellular carcinomas. Hepatology 38: 1242–1249.

    CAS  PubMed  Google Scholar 

  • Oshiro N, Yoshino K, Hidayat S, Tokunaga C, Hara K, Eguchi S et al. (2004). Dissociation of raptor from mTOR is a mechanism of rapamycin-induced inhibition of mTOR function. Genes Cells 9: 359–366.

    CAS  PubMed  Google Scholar 

  • Panner A, James CD, Berger MS, Pieper RO . (2005). mTOR controls FLIPS translation and TRAIL sensitivity in glioblastoma multiforme cells. Mol Cell Biol 25: 8809–8823.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pende M, Um SH, Mieulet V, Sticker M, Goss VL, Mestan J et al. (2004). S6K1(−/−)/S6K2(−/−) mice exhibit perinatal lethality and rapamycin-sensitive 5′-terminal oligopyrimidine mRNA translation and reveal a mitogen-activated protein kinase-dependent S6 kinase pathway. Mol Cell Biol 24: 3112–3124.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Perrotti D, Calabretta B . (2004). Translational regulation by the p210 BCR/ABL oncoprotein. Oncogene 23: 3222–3229.

    CAS  PubMed  Google Scholar 

  • Plas DR, Thompson CB . (2005). Akt-dependent transformation: there is more to growth than just surviving. Oncogene 24: 7435–7442.

    CAS  PubMed  Google Scholar 

  • Provenzani A, Fronza R, Loreni F, Pascale A, Amadio M, Quattrone A . (2006). Global alterations in mRNA polysomal recruitment in a cell model of colorectal cancer progression to metastasis. Carcinogenesis 27: 1323–1333.

    CAS  PubMed  Google Scholar 

  • Rajasekhar VK, Holland EC . (2004). Postgenomic global analysis of translational control induced by oncogenic signaling. Oncogene 23: 3248–3264.

    CAS  PubMed  Google Scholar 

  • Rajasekhar VK, Viale A, Socci ND, Wiedmann M, Hu X, Holland EC . (2003). Oncogenic Ras and Akt signaling contribute to glioblastoma formation by differential recruitment of existing mRNAs to polysomes. Mol Cell 12: 889–901.

    CAS  PubMed  Google Scholar 

  • Rao RD, Mladek AC, Lamont JD, Goble JM, Erlichman C, James CD et al. (2005). Disruption of parallel and converging signaling pathways contributes to the synergistic antitumor effects of simultaneous mTOR and EGFR inhibition in GBM cells. Neoplasia 7: 921–929.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Raught B, Peiretti F, Gingras AC, Livingstone M, Shahbazian D, Mayeur GL et al. (2004). Phosphorylation of eucaryotic translation initiation factor 4B Ser422 is modulated by S6 kinases. EMBO J 23: 1761–1769.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ridanpaa M, van Eenennaam H, Pelin K, Chadwick R, Johnson C, Yuan B et al. (2001). Mutations in the RNA component of RNase MRP cause a pleiotropic human disease, cartilage-hair hypoplasia. Cell 104: 195–203.

    CAS  PubMed  Google Scholar 

  • Rousseau D, Kaspar R, Rosenwald I, Gehrke L, Sonenberg N . (1996). Translation initiation of ornithine decarboxylase and nucleocytoplasmic transport of cyclin D1 mRNA are increased in cells overexpressing eukaryotic initiation factor 4E. Proc Natl Acad Sci USA 93: 1065–1070.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruggero D, Grisendi S, Piazza F, Rego E, Mari F, Rao PH et al. (2003). Dyskeratosis congenita and cancer in mice deficient in ribosomal RNA modification. Science 299: 259–262.

    CAS  PubMed  Google Scholar 

  • Ruggero D, Montanaro L, Ma L, Xu W, Londei P, Cordon-Cardo C et al. (2004). The translation factor eIF-4E promotes tumor formation and cooperates with c-Myc in lymphomagenesis. Nat Med 10: 484–486.

    CAS  PubMed  Google Scholar 

  • Ruggero D, Pandolfi PP . (2003). Does the ribosome translate cancer? Nat Rev Cancer 3: 179–192.

    CAS  PubMed  Google Scholar 

  • Ruvinsky I, Meyuhas O . (2006). Ribosomal protein S6 phosphorylation: from protein synthesis to cell size. Trends Biochem Sci 31: 342–348.

    CAS  PubMed  Google Scholar 

  • Ruvinsky I, Sharon N, Lerer T, Cohen H, Stolovich-Rain M, Nir T et al. (2005). Ribosomal protein S6 phosphorylation is a determinant of cell size and glucose homeostasis. Genes Dev 19: 2199–2211.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Salehi Z, Mashayekhi F . (2006). Expression of the eukaryotic translation initiation factor 4E (eIF4E) and 4E-BP1 in esophageal cancer. Clin Biochem 39: 404–409.

    CAS  PubMed  Google Scholar 

  • Samuels Y, Velculescu VE . (2004). Oncogenic Mutations of PIK3CA in Human Cancers. Cell Cycle 3: 1221–1224.

    CAS  PubMed  Google Scholar 

  • Scheuner D, Patel R, Wang F, Lee K, Kumar K, Wu J et al. (2006). Double-stranded RNA-dependent protein kinase phosphorylation of the alpha-subunit of eukaryotic translation initiation factor 2 mediates apoptosis. J Biol Chem 281: 21458–21468.

    CAS  PubMed  Google Scholar 

  • Schmidt EV . (2004). The role of c-myc in regulation of translation initiation. Oncogene 23: 3217–3221.

    CAS  PubMed  Google Scholar 

  • Shayesteh L, Lu Y, Kuo WL, Baldocchi R, Godfrey T, Collins C et al. (1999). PIK3CA is implicated as an oncogene in ovarian cancer. Nat Genet 21: 99–102.

    CAS  PubMed  Google Scholar 

  • Shi J, Kahle A, Hershey JW, Honchak BM, Warneke JA, Leong SP et al. (2006). Decreased expression of eukaryotic initiation factor 3f deregulates translation and apoptosis in tumor cells. Oncogene 25: 4923–4936.

    CAS  PubMed  Google Scholar 

  • Shinohara ET, Cao C, Niermann K, Mu Y, Zeng F, Hallahan DE et al. (2005). Enhanced radiation damage of tumor vasculature by mTOR inhibitors. Oncogene 24: 5414–5422.

    CAS  PubMed  Google Scholar 

  • Shuda M, Kondoh N, Tanaka K, Ryo A, Wakatsuki T, Hada A et al. (2000). Enhanced expression of translation factor mRNAs in hepatocellular carcinoma. Anticancer Res 20: 2489–2494.

    CAS  PubMed  Google Scholar 

  • Skeen JE, Bhaskar PT, Chen CC, Chen WS, Peng XD, Nogueira V et al. (2006). Akt deficiency impairs normal cell proliferation and suppresses oncogenesis in a p53-independent and mTORC1-dependent manner. Cancer Cell 10: 269–280.

    CAS  PubMed  Google Scholar 

  • Sorrells Jr DL, Ghali GE, De Benedetti A, Nathan CA, Li BD . (1999). Progressive amplification and overexpression of the eukaryotic initiation factor 4E gene in different zones of head and neck cancers. J Oral Maxillofac Surg 57: 294–299.

    PubMed  Google Scholar 

  • Stephens L, Williams R, Hawkins P . (2005). Phosphoinositide 3-kinases as drug targets in cancer. Curr Opin Pharmacol 5: 357–365.

    CAS  PubMed  Google Scholar 

  • Stojdl DF, Lichty BD, tenOever BR, Paterson JM, Power AT, Knowles S et al. (2003). VSV strains with defects in their ability to shutdown innate immunity are potent systemic anti-cancer agents. Cancer Cell 4: 263–275.

    CAS  PubMed  Google Scholar 

  • Stokoe D . (2005). The phosphoinositide 3-kinase pathway and cancer. Expert Rev Mol Med 7: 1–22.

    PubMed  Google Scholar 

  • Strong JE, Coffey MC, Tang D, Sabinin P, Lee PW . (1998). The molecular basis of viral oncolysis: usurpation of the Ras signaling pathway by reovirus. EMBO J 17: 3351–3362.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi M, Absalon MJ, McLure KG, Kastan MB . (2005). Regulation of p53 translation and induction after DNA damage by ribosomal protein L26 and nucleolin. Cell 123: 49–63.

    CAS  PubMed  Google Scholar 

  • Thiel CT, Horn D, Zabel B, Ekici AB, Salinas K, Gebhart E et al. (2005). Severely incapacitating mutations in patients with extreme short stature identify RNA-processing endoribonuclease RMRP as an essential cell growth regulator. Am J Hum Genet 77: 795–806.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas GV, Tran C, Mellinghoff IK, Welsbie DS, Chan E, Fueger B et al. (2006). Hypoxia-inducible factor determines sensitivity to inhibitors of mTOR in kidney cancer. Nat Med 12: 122–127.

    CAS  PubMed  Google Scholar 

  • Toczyski DP, Matera AG, Ward DC, Steitz JA . (1994). The Epstein-Barr virus (EBV) small RNA EBER1 binds and relocalizes ribosomal protein L22 in EBV-infected human B lymphocytes. Proc Natl Acad Sci USA 91: 3463–3467.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tominaga Y, Tamguney T, Kolesnichenko M, Bilanges B, Stokoe D . (2005). Translational Deregulation in PDK-1−/− Embryonic Stem Cells. Mol Cell Biol 25: 8465–8475.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomlinson VA, Newbery HJ, Wray NR, Jackson J, Larionov A, Miller WR et al. (2005). Translation elongation factor eEF1A2 is a potential oncoprotein that is overexpressed in two-thirds of breast tumours. BMC Cancer 5: 113.

    PubMed  PubMed Central  Google Scholar 

  • Tuxworth Jr WJ, Saghir AN, Spruill LS, Menick DR, McDermott PJ . (2004). Regulation of protein synthesis by eIF4E phosphorylation in adult cardiocytes: the consequence of secondary structure in the 5′-untranslated region of mRNA. Biochem J 378: 73–82.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vanhaesebroeck B, Alessi DR . (2000). The PI3K-PDK1 connection: more than just a road to PKB. Biochem J 346 (Part 3): 561–576.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vulliamy TJ, Marrone A, Knight SW, Walne A, Mason PJ, Dokal I . (2006). Mutations in dyskeratosis congenita: their impact on telomere length and the diversity of clinical presentation. Blood 107: 2680–2685.

    CAS  PubMed  Google Scholar 

  • Wang MY, Lu KV, Zhu S, Dia EQ, Vivanco I, Shackleford GM et al. (2006). Mammalian target of rapamycin inhibition promotes response to epidermal growth factor receptor kinase inhibitors in PTEN-deficient and PTEN-intact glioblastoma cells. Cancer Res 66: 7864–7869.

    CAS  PubMed  Google Scholar 

  • Wang X, Li W, Williams M, Terada N, Alessi DR, Proud CG . (2001). Regulation of elongation factor 2 kinase by p90(RSK1) and p70 S6 kinase. EMBO J 20: 4370–4379.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Weber G, Lea MA . (1966). The molecular correlation concept of neoplasia. Adv Enzyme Regul 4: 115–145.

    CAS  PubMed  Google Scholar 

  • Welsh JB, Zarrinkar PP, Sapinoso LM, Kern SG, Behling CA, Monk BJ et al. (2001). Analysis of gene expression profiles in normal and neoplastic ovarian tissue samples identifies candidate molecular markers of epithelial ovarian cancer. Proc Natl Acad Sci USA 98: 1176–1181.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wendel HG, Stanchina Ed E, Fridman JS, Malina A, Ray S, Kogan S et al. (2004). Survival signalling by Akt and eIF4E in oncogenesis and cancer therapy. Nature 428: 332–337.

    CAS  PubMed  Google Scholar 

  • Wong JM, Collins K . (2006). Telomerase RNA level limits telomere maintenance in X-linked dyskeratosis congenita. Genes Dev 20: 2848–2858.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang HS, Jansen AP, Komar AA, Zheng X, Merrick WC, Costes S et al. (2003). The transformation suppressor Pdcd4 is a novel eukaryotic translation initiation factor 4A binding protein that inhibits translation. Mol Cell Biol 23: 26–37.

    PubMed  PubMed Central  Google Scholar 

  • Yang WQ, Senger DL, Lun XQ, Muzik H, Shi ZQ, Dyck RH et al. (2004a). Reovirus as an experimental therapeutic for brain and leptomeningeal metastases from breast cancer. Gene Ther 11: 1579–1589.

    CAS  PubMed  Google Scholar 

  • Yang ZZ, Tschopp O, Baudry A, Dummler B, Hynx D, Hemmings BA . (2004b). Physiological functions of protein kinase B/Akt. Biochem Soc Trans 32: 350–354.

    CAS  PubMed  Google Scholar 

  • Yokogami K, Wakisaka S, Avruch J, Reeves SA . (2000). Serine phosphorylation and maximal activation of STAT3 during CNTF signaling is mediated by the rapamycin target mTOR. Curr Biol 10: 47–50.

    CAS  PubMed  Google Scholar 

  • Yonezawa K, Yoshino KI, Tokunaga C, Hara K . (2004). Kinase activities associated with mTOR. Curr Top Microbiol Immunol 279: 271–282.

    CAS  PubMed  Google Scholar 

  • Yoon A, Peng G, Brandenburger Y, Zollo O, Xu W, Rego E et al. (2006). Impaired control of IRES-mediated translation in X-linked dyskeratosis congenita. Science 312: 902–906.

    CAS  PubMed  Google Scholar 

  • Yu D, Scott C, Jia WW, De Benedetti A, Williams BJ, Fazli L et al. (2006). Targeting and killing of prostate cancer cells using lentiviral constructs containing a sequence recognized by translation factor eIF4E and a prostate-specific promoter. Cancer Gene Ther 13: 32–43.

    CAS  PubMed  Google Scholar 

  • Yu K, Toral-Barza L, Discafani C, Zhang WG, Skotnicki J, Frost P et al. (2001). mTOR, a novel target in breast cancer: the effect of CCI-779, an mTOR inhibitor, in preclinical models of breast cancer. Endocr Relat Cancer 8: 249–258.

    PubMed  Google Scholar 

  • Zakowicz H, Yang HS, Stark C, Wlodawer A, Laronde-Leblanc N, Colburn NH . (2005). Mutational analysis of the DEAD-box RNA helicase eIF4AII characterizes its interaction with transformation suppressor Pdcd4 and eIF4GI. Rna 11: 261–274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhai W, Comai L . (2000). Repression of RNA polymerase I transcription by the tumor suppressor p53. Mol Cell Biol 20: 5930–5938.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Zhou W, Velculescu VE, Kern SE, Hruban RH, Hamilton SR et al. (1997). Gene expression profiles in normal and cancer cells. Science 276: 1268–1272.

    CAS  PubMed  Google Scholar 

  • Zhou S, Wang GP, Liu C, Zhou M . (2006). Eukaryotic initiation factor 4E (eIF4E) and angiogenesis: prognostic markers for breast cancer. BMC Cancer 6: 231.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are grateful to Tanja Tamgüney, Christina Spevak and Markus Lacher for critical and helpful comments on the manuscript. Work in this lab is supported by Grants from the Department of Defense Tuberous Sclerosis Research Program (TS030017 and TS050054) and the NIH P50 CA97257.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B Bilanges.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bilanges, B., Stokoe, D. Mechanisms of translational deregulation in human tumors and therapeutic intervention strategies. Oncogene 26, 5973–5990 (2007). https://doi.org/10.1038/sj.onc.1210431

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210431

Keywords

This article is cited by

Search

Quick links