Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

RASSF6 is a novel member of the RASSF family of tumor suppressors

Abstract

RASSF family proteins are tumor suppressors that are frequently downregulated during the development of human cancer. The best-characterized member of the family is RASSF1A, which is downregulated by promoter methylation in 40–90% of primary human tumors. We now identify and characterize a novel member of the RASSF family, RASSF6. Like the other family members, RASSF6 possesses a Ras Association domain and binds activated Ras. Exogenous expression of RASSF6 promoted apoptosis, synergized with activated K-Ras to induce cell death and inhibited the survival of specific tumor cell lines. Suppression of RASSF6 enhanced the tumorigenic phenotype of a human lung tumor cell line. Furthermore, RASSF6 is often downregulated in primary human tumors. RASSF6 shares some similar overall properties as other RASSF proteins. However, there are significant differences in biological activity between RASSF6 and other family members including a discrete tissue expression profile, cell killing specificity and impact on signaling pathways. Moreover, RASSF6 may play a role in dictating the degree of inflammatory response to the respiratory syncytial virus. Thus, RASSF6 is a novel RASSF family member that demonstrates the properties of a Ras effector and tumor suppressor but exhibits biological properties that are unique and distinct from those of other family members.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Abbreviations

GST:

glutathione S transferase

RA:

Ras association

RSV:

respiratory syncytial virus

References

  • Agathanggelou A, Cooper WN, Latif F . (2005). Role of the Ras-association domain family 1 tumor suppressor gene in human cancers. Cancer Res 65: 3497–3508.

    Article  CAS  PubMed  Google Scholar 

  • Akino K, Toyota M, Suzuki H, Mita H, Sasaki Y, Ohe-Toyota M et al. (2005). The Ras effector RASSF2 is a novel tumor-suppressor gene in human colorectal cancer. Gastroenterology 129: 156–169.

    Article  CAS  PubMed  Google Scholar 

  • Baksh S, Tommasi S, Fenton S, Yu VC, Martins LM, Pfeifer GP et al. (2005). The tumor suppressor RASSF1A and MAP-1 link death receptor signaling to Bax conformational change and cell death. Mol Cell 18: 637–650.

    Article  CAS  PubMed  Google Scholar 

  • Bitko V, Garmon NE, Cao T, Estrada B, Oakes JE, Lausch RN et al. (2004). Activation of cytokines and NF-kappa B in corneal epithelial cells infected by respiratory syncytial virus: potential relevance in ocular inflammation and respiratory infection. BMC Microbiol 4: 28.

    Article  PubMed  PubMed Central  Google Scholar 

  • Burbee DG, Forgacs E, Zochbauer-Muller S, Shivakumar L, Fong K, Gao B et al. (2001). Epigenetic inactivation of RASSF1A in lung and breast cancers and malignant phenotype suppression. J Natl Cancer Inst 93: 691–699.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen J, Lui WO, Vos MD, Clark GJ, Takahashi M, Schoumans J et al. (2003). The t(1;3) breakpoint-spanning genes LSAMP and NORE1 are involved in clear cell renal cell carcinomas. Cancer Cell 4: 405–413.

    Article  CAS  PubMed  Google Scholar 

  • Clark GJ, Drugan JK, Terrell RS, Bradham C, Der CJ, Bell RM et al. (1996). Peptides containing a consensus Ras binding sequence from Raf-1 and theGTPase activating protein NF1 inhibit Ras function. Proc Natl Acad Sci USA 93: 1577–1581.

    Article  CAS  PubMed  Google Scholar 

  • Cox AD, Der CJ . (2003). The dark side of Ras: regulation of apoptosis. Oncogene 22: 8999–9006.

    Article  CAS  PubMed  Google Scholar 

  • Dammann R, Li C, Yoon JH, Chin PL, Bates S, Pfeifer GP . (2000). Epigenetic inactivation of a RAS association domain family protein from the lung tumour suppressor locus 3p21.3. Nat Genet 25: 315–319.

    Article  CAS  PubMed  Google Scholar 

  • Diep CB, Teixeira MR, Thorstensen L, Wiig JN, Eknaes M, Nesland JM et al. (2004). Genome characteristics of primary carcinomas, local recurrences, carcinomatoses, and liver metastases from colorectal cancer patients. Mol Cancer 3: 6.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eckfeld K, Hesson L, Vos MD, Bieche I, Latif F, Clark GJ . (2004). RASSF4/AD037 is a potential ras effector/tumor suppressor of the RASSF family. Cancer Res 64: 8688–8693.

    Article  CAS  PubMed  Google Scholar 

  • Ellis CA, Vos MD, Howell H, Vallecorsa T, Fults DW, Clark GJ . (2002). Rig is a novel Ras-related protein and potential neural tumor suppressor. Proc Natl Acad Sci USA 99: 9876–9881.

    Article  CAS  PubMed  Google Scholar 

  • Feig LA, Buchsbaum RJ . (2002). Cell signaling: life or death decisions of ras proteins. Curr Biol 12: R259–R261.

    Article  CAS  PubMed  Google Scholar 

  • Fiordalisi JJ, Johnson RL 2nd, Ulku AS, Der CJ, Cox AD . (2001). Mammalian expression vectors for Ras family proteins: generation and use of expression constructs to analyze Ras family functions. Meth Enzymology 332: 3–36.

    Article  CAS  Google Scholar 

  • Frame S, Balmain A . (2000). Integration of positive and negative growth signals during ras pathway activation in vivo. Curr Opin Genet Dev 10: 106–113.

    Article  CAS  PubMed  Google Scholar 

  • Hueber AO, Evan GI . (1998). Traps to catch unwary oncogenes. Trends Genet 14: 364–367.

    Article  CAS  PubMed  Google Scholar 

  • Hull J, Rowlands K, Lockhart E, Sharland M, Moore C, Hanchard N et al. (2004). Haplotype mapping of the bronchiolitis susceptibility locus near IL8. Hum Genet 114: 272–279.

    Article  CAS  PubMed  Google Scholar 

  • Khokhlatchev A, Rabizadeh S, Xavier R, Nedwidek M, Chen T, Zhang XF et al. (2002). Identification of a novel Ras-regulated proapoptotic pathway. Curr Biol 12: 253–265.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Barbacid M . (2003). RAS oncogenes: the first 30 years. Nat Rev Cancer 3: 459–465.

    Article  CAS  PubMed  Google Scholar 

  • Malumbres M, Pellicer A . (1998). RAS pathways to cell cycle control and cell transformation. Front Biosci 3: d887–d912.

    Article  CAS  PubMed  Google Scholar 

  • Marshall MS . (1993). The effector interactions of p21ras. Trends Biochem Sci 18: 250–254.

    Article  CAS  PubMed  Google Scholar 

  • Mayo MW, Wang CY, Cogswell PC, Rogers-Graham KS, Lowe SW, Der CJ et al. (1997). Requirement of NF-kappaB activation to suppress p53-independent apoptosis induced by oncogenic Ras. Science 278: 1812–1815.

    Article  CAS  PubMed  Google Scholar 

  • Nicke B, Bastien J, Khanna SJ, Warne PH, Cowling V, Cook SJ et al. (2005). Involvement of MINK, a Ste20 family kinase, in Ras oncogene-induced growth arrest in human ovarian surface epithelial cells. Mol Cell 20: 673–685.

    Article  CAS  PubMed  Google Scholar 

  • Okada T, Masuda T, Shinkai M, Kariya K, Kataoka T . (1996). Post-translational modification of H-Ras is required for activation of, but not for association with, B-Raf. J Biol Chem 271: 4671–4678.

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer GP, Yoon JH, Liu L, Tommasi S, Wilczynski SP, Dammann R . (2002). Methylation of the RASSF1A gene in human cancers. Biol Chem 383: 907–914.

    Article  CAS  PubMed  Google Scholar 

  • Ponting DP, Benjamin DR . (1996). A novel family of Ras-binding domains. Trends Biochem Sci 21: 422–425.

    Article  CAS  PubMed  Google Scholar 

  • Serrano M, Lin AW, McCurrach ME, Beach D, Lowe SW . (1997). Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88: 593–602.

    Article  CAS  Google Scholar 

  • Shields JM, Pruitt K, McFall A, Shaub A, Der CJ . (2000). Understanding Ras: ‘it ain’t over ‘til it's over’. Trends Cell Biol 10: 147–154.

    Article  CAS  PubMed  Google Scholar 

  • Smyth RL, Openshaw PJ . (2006). Bronchiolitis. Lancet 368: 312–322.

    Article  PubMed  Google Scholar 

  • Solski PA, Quilliam LA, Coats SG, Der CJ, Buss JE . (1995). Targeting proteins to membranes using signal sequences for lipid modification. Methods Enzymol 250: 435–454.

    Article  CAS  PubMed  Google Scholar 

  • Tommasi S, Dammann R, Jin SG, Zhang XX, Avruch J, Pfeifer GP . (2002). RASSF3 and NORE1: identification and cloning of two human homologues of the putative tumor suppressor gene RASSF1. Oncogene 21: 2713–2720.

    Article  CAS  PubMed  Google Scholar 

  • Tommasi S, Dammann R, Zhang Z, Wang Y, Liu L, Tsark WM et al. (2005). Tumor susceptibility of Rassf1a knockout mice. Cancer Res 65: 92–98.

    CAS  PubMed  Google Scholar 

  • Vos MD, Dallol A, Eckfeld K, Allen NP, Donninger H, Hesson L et al. (2006). The RASSF1A tumor suppressor activates Bax via MOAP-1. J Biol Chem 281: 4557–4563.

    Article  CAS  PubMed  Google Scholar 

  • Vos MD, Ellis CA, Bell A, Birrer MJ, Clark GJ . (2000). Ras uses the novel tumor suppressor RASSF1 as an effector to mediate apoptosis. J Biol Chem 275: 35669–35672.

    Article  CAS  PubMed  Google Scholar 

  • Vos MD, Ellis CA, Elam C, Ulku AS, Taylor BJ, Clark GJ . (2003a). RASSF2 is a novel K-Ras-specific effector and potential tumor suppressor. J Biol Chem 278: 28045–28051.

    Article  CAS  PubMed  Google Scholar 

  • Vos MD, Martinez A, Elam C, Dallol A, Taylor BJ, Latif F et al. (2004). A role for the RASSF1A tumor suppressor in the regulation of tubulin polymerization and genomic stability. Cancer Res 64: 4244–4250.

    Article  CAS  PubMed  Google Scholar 

  • Vos MD, Martinez A, Ellis CA, Vallecorsa T, Clark GJ . (2003b). The pro-apoptotic Ras effector Nore1 may serve as a Ras-regulated tumor suppressor in the lung. J Biol Chem 278: 21938–21943.

    Article  CAS  PubMed  Google Scholar 

  • White MA, Nicolette C, Minden A, Polverino A, Van AL, Karin M et al. (1995). Multiple Ras functions can contribute to mammalian cell transformation. Cell 80: 533–541.

    Article  CAS  PubMed  Google Scholar 

  • Williams JG, Drugan JK, Yi GS, Clark GJ, Der CJ, Campbell SL . (2000). Elucidation of binding determinants and functional consequences of Ras/Raf-cysteine-rich domain interactions. J Biol Chem 275: 22172–22179.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported in part by Intramural funds of the National Cancer Institute and RR018733 (GJC), FL is supported in part by Cancer Research UK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G J Clark.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Allen, N., Donninger, H., Vos, M. et al. RASSF6 is a novel member of the RASSF family of tumor suppressors. Oncogene 26, 6203–6211 (2007). https://doi.org/10.1038/sj.onc.1210440

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210440

Keywords

This article is cited by

Search

Quick links