Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Significance of HIF-1-active cells in angiogenesis and radioresistance

Abstract

Human solid tumors contain hypoxic regions that have considerably lower oxygen tension than the normal tissues. Hypoxia offers resistance to radiotherapy and anticancer chemotherapy, as well as predispose to increased tumor metastases. Furthermore, hypoxia induces hypoxia-inducible factor-1 (HIF-1), which in turn increases tumor angiogenesis. Thus, eradication of HIF-1-active/hypoxic tumor cells is very important for cancer therapy. We have previously reported that procaspase-3 fused with a von Hippel–Lindau (VHL)-mediated protein destruction motif of alpha subunit of HIF-1 (HIF-1α) containing Pro564, named TAT-ODD-procaspase-3 (TOP3), specifically induced cell death to hypoxic cells in vivo as well as in vitro. We now report that TOP3 also eradicates the radiation-induced HIF-1-active tumor cells. HIF-1 activity in the xenografts of human tumor cells, which express luciferase under the transcriptional control of HIF-1, were monitored and quantified daily with an in vivo bioluminescence photon-counting device. HIF-1 activity in tumors was more rapidly increased by ionizing radiation (IR) compared to untreated tumors. TOP3 efficiently decreased the HIF-1-activity in irradiated tumors as well as unirradiated ones, indicating TOP3 eradicated tumor cells with HIF-1-activity induced by IR as well as hypoxia. Eradication of HIF-1-active/hypoxic cells in the xenografts during irradiation exhibited significant suppression in angiogenesis and strong enhancement in a long-term growth suppression of tumor xenografts. These results further strengthen the argument that HIF-1-active/hypoxic cells play crucial roles in angiogenesis and radioresistance.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Purchase on Springer Link

Instant access to full article PDF

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Abbreviations

HIF-1:

hypoxia-inducible factor-1

PTD:

protein-transduction domain

References

  • Abdollahi A, Lipson KE, Han X, Krempien R, Trinh T, Weber KJ et al. (2003). SU5416 and SU6668 attenuate the angiogenic effects of radiation-induced tumor cell growth factor production and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res 63: 3755–3763.

    CAS  PubMed  Google Scholar 

  • Brown JM . (1999). The hypoxic cell: a target for selective cancer therapy – eighteenth Bruce F. Cain Memorial Award lecture. Cancer Res 59: 5863–5870.

    CAS  PubMed  Google Scholar 

  • Brown JM, Wilson WR . (2004). Exploiting tumor hypoxia in cancer treatment. Nat Rev Cancer 4: 437–447.

    Article  CAS  PubMed  Google Scholar 

  • Bruick RK, McKnight SL . (2001). A conserved family of prolyl-4-hydroxylases that modify HIF. Science 294: 1337–1340.

    Article  CAS  PubMed  Google Scholar 

  • Cockman ME, Masson N, Mole DR, Jaakkola P, Chang GW, Clifford SC et al. (2000). Hypoxia inducible factor-alpha binding and ubiquitylation by the von Hippel–Lindau tumor suppressor protein. J Biol Chem 275: 25733–25741.

    Article  CAS  PubMed  Google Scholar 

  • de Candia P, Solit DB, Giri D, Brogi E, Siegel PM, Olshen AB et al. (2003). Angiogenesis impairment in Id-deficient mice cooperates with an Hsp90 inhibitor to completely suppress HER2/neu-dependent breast tumors. Proc Natl Acad Sci USA 100: 12337–12342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Epstein AC, Gleadle JM, McNeill LA, Hewitson KS, O'Rourke J, Mole DR et al. (2001). C. elegans EGL-9 and mammalian homologs define a family of dioxygenases that regulate HIF by prolyl hydroxylation. Cell 107: 43–54.

    Article  CAS  PubMed  Google Scholar 

  • Fernandes-Alnemri T, Litwack G, Alnemri ES . (1994). CPP32, a novel human apoptotic protein with homology toaenorhabditis elegans cell death protein Ced-3 and mammalian interleukin-1 beta-converting enzyme. J Biol Chem 269: 30761–30764.

    CAS  PubMed  Google Scholar 

  • Geng L, Donnelly E, McMahon G, Lin PC, Sierra-Rivera E, Oshinka H et al. (2001). Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 61: 2413–2419.

    CAS  PubMed  Google Scholar 

  • Gorski DH, Beckett MA, Jaskowiak NT, Calvin DP, Mauceri HJ, Salloum RM et al. (1999). Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59: 3374–3378.

    CAS  PubMed  Google Scholar 

  • Harada H, Hiraoka M, Kizaka-Kondoh S . (2002). Antitumor effect of TAT-oxygen-dependent degradation-caspase-3 fusion protein specifically stabilized and activated in hypoxic tumor cells. Cancer Res 62: 2013–2018.

    CAS  PubMed  Google Scholar 

  • Harada H, Kizaka-Kondoh S, Hiraoka M . (2005). Optical imaging of tumor hypoxia and evaluation of efficacy of a hypoxia-targeting drug in living animals. Mol Imaging 4: 182–193.

    Article  PubMed  Google Scholar 

  • Harada H, Kizaka-Kondoh S, Hiraoka M . (2006). Mechanism of hypoxia-specific cytotoxicity of procaspase-3 fused with a VHL-mediated protein destruction motif of HIF-1a containing Pro564. FEBS Lett 580: 5718–5722.

    Article  CAS  PubMed  Google Scholar 

  • Harris AL . (2002). Hypoxia-a key regulatory factor in tumour growth. Nat Rev Cancer 2: 38–47.

    Article  CAS  PubMed  Google Scholar 

  • Höckel M, Knoop C, Schlenger K, Vorndran B, Baussmann E, Mitze M et al. (1993). Intratumoral pO2 predicts survival in advanced cancer of the uterine cervix. Radiother Oncol 26: 45–50.

    Article  PubMed  Google Scholar 

  • Huang LE, Gu J, Schau M, Bunn HF . (1998). Regulation of hypoxia-inducible factor 1 alpha is mediated by an O2-dependent degradation domain via the ubiquitin-proteasome pathway. Proc Natl Acad Sci USA 95: 7987–7992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Inoue M, Mukai M, Hamanaka Y, Tatsuta M, Hiraoka M, Kizaka-Kondoh S . (2004). Targeting hypoxic cancer cells with a protein prodrug is effective in experimental malignant ascites. Int J Oncol 25: 713–720.

    CAS  PubMed  Google Scholar 

  • Kallio PJ, Wilson WJ, O'Brien S, Makino Y, Poellinger L . (1999). Regulation of the hypoxia-inducible transcription factor 1alpha by the ubiquitin-proteasome pathway. J Biol Chem 274: 6519–6525.

    Article  CAS  PubMed  Google Scholar 

  • Kamura T, Sato S, Iwai K, Czyzyk-Krzeska M, Conaway RC, Conaway JW . (2000). Activation of HIF1alpha ubiquitination by a reconstituted von Hippel–Lindau (VHL) tumor suppressor complex. Proc Natl Acad Sci USA 97: 10430–10435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kizaka-Kondoh S, Inoue M, Harada H, Hiraoka M . (2003). Tumor hypoxia: a target for selective cancer therapy. Cancer Sci 94: 1021–1028.

    Article  CAS  PubMed  Google Scholar 

  • Mabjeesh NJ, Escuin D, LaVallee TM, Pribluda VS, Swartz GM, Johnson MS et al. (2003). 2ME2 inhibits tumor growth and angiogenesis by disrupting microtubules and dysregulating HIF. Cancer Cell 3: 363–375.

    Article  CAS  PubMed  Google Scholar 

  • Moeller BJ, Cao Y, Li CY, Dewhirst MW . (2004). Radiation activates HIF-1 to regulate vascular radiosensitivity in tumors: role of reoxygenation, free radicals, and stress granules. Cancer Cell 5: 429–441.

    Article  CAS  PubMed  Google Scholar 

  • Ohh M, Park CW, Ivan M, Hoffman MA, Kim TY, Huang LE et al. (2000). Ubiquitination of hypoxia-inducible factor requires direct binding to the beta-domain of the von Hippel–Lindau protein. Nat Cell Biol 2: 423–427.

    Article  CAS  PubMed  Google Scholar 

  • Overgaard J, Eriksen JG, Nordsmark M, Alsner J, Horsman MR, Danish Head and Neck Cancer Study Group. (2005). Plasma osteopontin, hypoxia, and response to the hypoxia sensitiser nimorazole in radiotherapy of head and neck cancer: results from the DAHANCA 5 randomised double-blind placebo-controlled trial. Lancet Oncol 6: 757–764.

    Article  CAS  PubMed  Google Scholar 

  • Raleigh JA, Calkins-Adams DP, Rinker LH, Ballenger CA, Weissler MC, Fowler Jr WC et al. (1998). Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. Cancer Res 58: 3765–3768.

    CAS  PubMed  Google Scholar 

  • Rapisarda A, Uranchimeg B, Scudiero DA, Selby M, Sausville EA, Shoemaker RH et al. (2002). Identification of small molecule inhibitors of hypoxia-inducible factor 1 transcriptional activation pathway. Cancer Res 62: 4316–4324.

    CAS  PubMed  Google Scholar 

  • Rischin D, Peters L, Fisher R, Macann A, Denham J, Poulsen M et al. (2005). Tirapazamine, Cisplatin, and radiation versus fluorouracil, cisplatin, and radiation in patients with locally advanced head and neck cancer: a randomized phase II trial of the Trans-Tasman Radiation Oncology Group (TROG 98.02). J Clin Oncol 23: 79–87.

    Article  CAS  PubMed  Google Scholar 

  • Rowinsky EK . (1999). Novel radiation sensitizers targeting tissue hypoxia. Oncology 13: 61–70.

    CAS  PubMed  Google Scholar 

  • Schwarze SR, Ho A, Vocero-Akbani A, Dowdy SF . (1999). In vivo protein transduction: delivery of a biologically active protein into the mouse. Science 285: 1569–1572.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL . (2003). Targeting HIF-1 for cancer therapy. Nat Rev Cancer 3: 721–732.

    Article  CAS  PubMed  Google Scholar 

  • Semenza GL, Wang GL . (1992). A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 12: 5447–5454.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sobhanifar S, Aquino-Parsons C, Stanbridge EJ, Olive P . (2005). Reduced expression of hypoxia-inducible factor-1alpha in perinecrotic regions of solid tumors. Cancer Res 65: 7259–7266.

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto K, Makino Y, Pereira T, Poellinger L . (2000). Mechanism of regulation of the hypoxia-inducible factor-1 alpha by the von Hippel–Lindau tumor suppressor protein. EMBO J 19: 4298–4309.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vaupel P . (2001). Tumor microenvironmental physiology and its implications for radiation oncology. Semin Radiat Oncol 14: 198–206.

    Article  Google Scholar 

  • Vaupel P, Kallinowski F, Okunieff P . (1989). Blood flow, oxygen and nutrient supply, and metabolic microenvironment of human tumors: a review. Cancer Res 49: 6449–6465.

    CAS  PubMed  Google Scholar 

  • Welsh SJ, Williams RR, Birmingham A, Newman DJ, Kirkpatrick DL, Powis G . (2003). The thioredoxin redox inhibitors 1-methylpropyl 2-imidazolyl disulfide and pleurotin inhibit hypoxia-induced factor 1alpha and vascular endothelial growth factor formation. Mol Cancer Ther 2: 235–243.

    CAS  PubMed  Google Scholar 

  • Yeo EJ, Chun YS, Cho YS, Kim J, Lee JC, Kim MS et al. (2003). YC-1: a potential anticancer drug targeting hypoxia-inducible factor 1. J Natl Cancer Inst 95: 516–525.

    Article  CAS  PubMed  Google Scholar 

  • Zackrisson B, Mercke C, Strander H, Wennerberg J, Cavallin-Stahl E . (2003). A systematic overview of radiation therapy effects in head and neck cancer. Acta Oncol 42: 443–461.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Dr Ohtsura Niwa for extensive discussion; Akiyo Morinibu, Emi Nishimoto and Naoko Harada for skilled technical assistance. This work was supported in part by grant-in-aid for Scientific Research on Priority Areas, Cancer, from the Ministry of Education, Culture, Sports, Science and Technology, and by a grant-in-aid for the second- and third-Term Comprehensive 10-Year Strategy for Cancer Control from the Ministry of Health, Labor and Welfare, Japan. This study is a part of joint research, which is focusing on the development of the basis of technology for establishing COE for nano-medicine, carried out through Kyoto City Collaboration of Regional Entities for Advancing Technology Excellence (CREATE) assigned by Japan Science and Technology Agency (JST).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Kizaka-Kondoh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Harada, H., Kizaka-Kondoh, S., Li, G. et al. Significance of HIF-1-active cells in angiogenesis and radioresistance. Oncogene 26, 7508–7516 (2007). https://doi.org/10.1038/sj.onc.1210556

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210556

Keywords

This article is cited by

Search

Quick links