Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function

Abstract

Nutlin-3, a small molecule inhibitor, activates p53 by disrupting p53-HDM2 association. In this study, we found that Nutlin-3 suppressed cell growth and induced apoptosis in the absence of wild-type p53, suggesting a p53-independent mechanism for Nutlin-3-induced cell death. Like p53, its homolog p73 transactivates proapoptotic genes and induces cell death. Since HDM2, a key negative regulator of p53, also binds to and inhibits p73, we asked whether p73 could mediate Nutlin-3-induced apoptosis. We demonstrate that Nutlin-3 inhibits endogenous binding between the proapoptotic p73 isoform TAp73α and HDM2 in p53-null cells. Dissociation of p73 and HDM2 leads to increased p73 transcriptional activity with upregulation of p73 target genes noxa, puma and p21, as well as enhanced apoptosis. p73 knockdown by siRNA results in rescue of Nutlin-3-treated cells, indicating that Nutlin-3-induced apoptosis is, at least in part, p73 dependent. In addition, Nutlin-3 treatment increases TAp73α protein levels with prolongation of p73 half-life. These results provide the first evidence that Nutlin-3 disrupts endogenous p73–HDM2 interaction and enhances the stability and proapoptotic activities of p73 and thus, provides a rationale for the use of Nutlin-3 in the large number of human tumors in which p53 is inactivated.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Ambrosini G, Sambol EB, Carvajal D, Vassilev LT, Singer S, Schwartz GK . (2007). Mouse double minute antagonist Nutlin-3a enhances chemotherapy-induced apoptosis in cancer cells with mutant p53 by activating E2F1. Oncogene 26: 3473–3481.

    Article  CAS  Google Scholar 

  • Balint E, Bates S, Vousden KH . (1999). Mdm2 binds p73 alpha without targeting degradation. Oncogene 18: 3923–3929.

    Article  CAS  Google Scholar 

  • Bergamaschi D, Samuels Y, Jin B, Duraisingham S, Crook T, Lu X . (2004). ASPP1 and ASPP2: common activators of p53 family members. Mol Cell Biol 24: 1341–1350.

    Article  CAS  Google Scholar 

  • Bottger V, Bottger A, Garcia-Echeverria C, Ramos YF, van der Eb AJ, Jochemsen AG et al. (1999). Comparative study of the p53-mdm2 and p53-MDMX interfaces. Oncogene 18: 189–199.

    Article  CAS  Google Scholar 

  • Calabro V, Mansueto G, Parisi T, Vivo M, Calogero RA, La Mantia G . (2002). The human MDM2 oncoprotein increases the transcriptional activity and the protein level of the p53 homolog p63. J Biol Chem 277: 2674–2681.

    Article  CAS  Google Scholar 

  • Coll-Mulet L, Iglesias-Serret D, Santidrian AF, Cosialls AM, de Frias M, Castano E et al. (2006). MDM2 antagonists activate p53 and synergize with genotoxic drugs in B-cell chronic lymphocytic leukemia cells. Blood 107: 4109–4114.

    Article  CAS  Google Scholar 

  • Hibi K, Trink B, Patturajan M, Westra WH, Caballero OL, Hill DE et al. (2000). AIS is an oncogene amplified in squamous cell carcinoma. Proc Natl Acad Sci USA 97: 5462–5467.

    Article  CAS  Google Scholar 

  • Irwin M, Marin MC, Phillips AC, Seelan RS, Smith DI, Liu W et al. (2000). Role for the p53 homologue p73 in E2F-1-induced apoptosis. Nature 407: 645–648.

    Article  CAS  Google Scholar 

  • Irwin MS . (2004). Family feud in chemosensitivity: p73 and mutant p53. Cell Cycle 3: 319–323.

    Article  CAS  Google Scholar 

  • Irwin MS, Kondo K, Marin MC, Cheng LS, Hahn WC, Kaelin Jr WG . (2003). Chemosensitivity linked to p73 function. Cancer Cell 3: 403–410.

    Article  CAS  Google Scholar 

  • Iwakuma T, Lozano G . (2003). MDM2, an introduction. Mol Cancer Res 1: 993–1000.

    CAS  PubMed  Google Scholar 

  • Kadakia M, Slader C, Berberich SJ . (2001). Regulation of p63 function by Mdm2 and MdmX. DNA Cell Biol 20: 321–330.

    Article  CAS  Google Scholar 

  • Kulikov R, Winter M, Blattner C . (2006). Binding of p53 to the central domain of Mdm2 is regulated by phosphorylation. J Biol Chem 281: 28575–28583.

    Article  CAS  Google Scholar 

  • Kussie PH, Gorina S, Marechal V, Elenbaas B, Moreau J, Levine AJ et al. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274: 948–953.

    Article  CAS  Google Scholar 

  • Larusch GA, Jackson MW, Dunbar JD, Warren RS, Donner DB, Mayo LD . (2007). Nutlin3 blocks vascular endothelial growth factor induction by preventing the interaction b. Cancer Res 67: 450–454.

    Article  CAS  Google Scholar 

  • Laurie NA, Donovan SL, Shih CS, Zhang J, Mills N, Fuller C et al. (2006). Inactivation of the p53 pathway in retinoblastoma. Nature 444: 61–66.

    Article  CAS  Google Scholar 

  • Ma J, Martin JD, Zhang H, Auger KR, Ho TF, Kirkpatrick RB et al. (2006). A second p53 binding site in the central domain of Mdm2 is essential for p53 ubiquitination. Biochemistry 45: 9238–9245.

    Article  CAS  Google Scholar 

  • Ongkeko WM, Wang XQ, Siu WY, Lau AW, Yamashita K, Harris AL et al. (1999). MDM2 and MDMX bind and stabilize the p53-related protein p73. Curr Biol 9: 829–832.

    Article  CAS  Google Scholar 

  • Patton JT, Mayo LD, Singhi AD, Gudkov AV, Stark GR, Jackson MW . (2006). Levels of HdmX expression dictate the sensitivity of normal and transformed cells to Nutlin-3. Cancer Res 66: 3169–3176.

    Article  CAS  Google Scholar 

  • Rocco JW, Leong CO, Kuperwasser N, DeYoung MP, Ellisen LW . (2006). p63 mediates survival in squamous cell carcinoma by suppression of p73-dependent apoptosis. Cancer Cell 9: 45–56.

    Article  CAS  Google Scholar 

  • Shimizu H, Burch LR, Smith AJ, Dornan D, Wallace M, Ball KL et al. (2002). The conformationally flexible S9-S10 linker region in the core domain of p53 contains a novel MDM2 binding site whose mutation increases ubiquitination of p53 in vivo. J Biol Chem 277: 28446–28458.

    Article  CAS  Google Scholar 

  • Tovar C, Rosinski J, Filipovic Z, Higgins B, Kolinsky K, Hilton H et al. (2006). Small-molecule MDM2 antagonists reveal aberrant p53 signaling in cancer: implications for therapy. Proc Natl Acad Sci USA 103: 1888–1893.

    Article  CAS  Google Scholar 

  • Van Maerken T, Speleman F, Vermeulen J, Lambertz I, De Clercq S, De Smet E et al. (2006). Small-molecule MDM2 antagonists as a new therapy concept for neuroblastoma. Cancer Res 66: 9646–9655.

    Article  CAS  Google Scholar 

  • VanderBorght A, Valckx A, Van Dun J, Grand-Perret T, De Schepper S, Vialard J et al. (2006). Effect of an hdm-2 antagonist peptide inhibitor on cell cycle progression in p53-deficient H1299 human lung carcinoma cells. Oncogene 25: 6672–6677.

    Article  CAS  Google Scholar 

  • Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z et al. (2004). In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303: 844–848.

    Article  CAS  Google Scholar 

  • Wallace M, Worrall E, Pettersson S, Hupp TR, Ball KL . (2006). Dual-site regulation of MDM2 E3-ubiquitin ligase activity. Mol Cell 23: 251–263.

    Article  CAS  Google Scholar 

  • Wang X, Arooz T, Siu WY, Chiu CH, Lau A, Yamashita K et al. (2001). MDM2 and MDMX can interact differently with ARF and members of the p53 family. FEBS Lett 490: 202–208.

    Article  CAS  Google Scholar 

  • Watson IR, Blanch A, Lin DC, Ohh M, Irwin MS . (2006). Mdm2-mediated NEDD8 modification of TAp73 regulates its transactivation function. J Biol Chem 281: 34096–34103.

    Article  CAS  Google Scholar 

  • Zeng X, Chen L, Jost CA, Maya R, Keller D, Wang X et al. (1999). MDM2 suppresses p73 function without promoting p73 degradation. Mol Cell Biol 19: 3257–3266.

    Article  CAS  Google Scholar 

  • Zhang Z, Wang H, Li M, Agrawal S, Chen X, Zhang R . (2004). MDM2 is a negative regulator of p21WAF1/CIP1, independent of p53. J Biol Chem 279: 16000–16006.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Lynn Cheng for technical assistance and Ian Watson and members of the Irwin Lab. This project is supported by The James Fund for Neuroblastoma Research at SickKids, the Terry Fox Foundation and the Canadian Cancer Society through the National Cancer Institute of Canada (NCIC). LL is a research fellow of the Terry Fox Foundation through the NCIC. MSI is Canada Research chair in Cancer Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M S Irwin.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lau, L., Nugent, J., Zhao, X. et al. HDM2 antagonist Nutlin-3 disrupts p73-HDM2 binding and enhances p73 function. Oncogene 27, 997–1003 (2008). https://doi.org/10.1038/sj.onc.1210707

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210707

Keywords

This article is cited by

Search

Quick links