Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The PEA-15/PED protein protects glioblastoma cells from glucose deprivation-induced apoptosis via the ERK/MAP kinase pathway

Abstract

PEA-15 (phosphoprotein enriched in astrocytes 15 kDa) is a death effector domain-containing protein, which is involved in the regulation of apoptotic cell death. Since PEA-15 is highly expressed in cells of glial origin, we studied the role of PEA-15 in human malignant brain tumors. Immunohistochemical analysis of PEA-15 expression shows strong immunoreactivity in astrocytomas and glioblastomas. Phosphorylation of PEA-15 at Ser116 is found in vivo in perinecrotic areas in glioblastomas and in vitro after glucose deprivation of glioblastoma cells. Overexpression of PEA-15 induces a marked resistance against glucose deprivation-induced apoptosis, whereas small interfering RNA (siRNA)-mediated downregulation of endogenous PEA-15 results in the sensitization to glucose withdrawal-mediated cell death. This antiapoptotic activity of PEA-15 under low glucose conditions depends on its phosphorylation at Ser116. Moreover, siRNA-mediated knockdown of PEA-15 abolishes the tumorigenicity of U87MG glioblastoma cells in vivo. PEA-15 regulates the level of phosphorylated extracellular-regulated kinase (ERK)1/2 in glioblastoma cells and the PEA-15-dependent protection from glucose deprivation-induced cell death requires ERK1/2 signaling. PEA-15 transcriptionally upregulates the Glucose Transporter 3, which is abrogated by the inhibition of ERK1/2 phosphorylation. Taken together, our findings suggest that Ser116-phosphorylated PEA-15 renders glioma cells resistant to glucose deprivation-mediated cell death as encountered in poor microenvironments, for example in perinecrotic areas of glioblastomas.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  • Araujo H, Danziger N, Cordier J, Glowinski J, Chneiweiss H . (1993). Characterization of PEA-15, a major substrate for protein kinase C in astrocytes. J Biol Chem 268: 5911–5920.

    CAS  PubMed  Google Scholar 

  • Bartholomeusz C, Itamochi H, Nitta M, Saya H, Ginsberg MH, Ueno NT . (2006). Antitumor effect of E1A in ovarian cancer by cytoplasmic sequestration of activated ERK by PEA15. Oncogene 25: 79–90.

    Article  CAS  PubMed  Google Scholar 

  • Boulos S, Meloni BP, Arthur PG, Majda B, Bojarski C, Knuckey NW . (2007). Evidence that intracellular cyclophilin A and cyclophilin A/CD147 receptor-mediated ERK1/2 signalling can protect neurons against in vitro oxidative and ischemic injury. Neurobiol Dis 25: 54–64.

    Article  CAS  PubMed  Google Scholar 

  • Chou FL, Hill JM, Hsieh JC, Pouyssegur J, Brunet A, Glading A et al. (2003). PEA-15 binding to ERK1/2 MAPKs is required for its modulation of integrin activation. J Biol Chem 278: 52587–52597.

    Article  CAS  PubMed  Google Scholar 

  • Condorelli G, Trencia A, Vigliotta G, Perfetti A, Goglia U, Cassese A et al. (2002). Multiple members of the mitogen-activated protein kinase family are necessary for PED/PEA-15 anti-apoptotic function. J Biol Chem 277: 11013–11018.

    Article  CAS  PubMed  Google Scholar 

  • Condorelli G, Vigliotta G, Cafieri A, Trencia A, Andalo P, Oriente F et al. (1999). PED/PEA-15: an anti-apoptotic molecule that regulates FAS/TNFR1-induced apoptosis. Oncogene 18: 4409–4415.

    Article  CAS  PubMed  Google Scholar 

  • Condorelli G, Vigliotta G, Iavarone C, Caruso M, Tocchetti CG, Andreozzi F et al. (1998). PED/PEA-15 gene controls glucose transport and is overexpressed in type 2 diabetes mellitus. EMBO J 17: 3858–3866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danziger N, Yokoyama M, Jay T, Cordier J, Glowinski J, Chneiweiss H . (1995). Cellular expression, developmental regulation, and phylogenic conservation of PEA-15, the astrocytic major phosphoprotein and protein kinase C substrate. J Neurochem 64: 1016–1025.

    Article  CAS  PubMed  Google Scholar 

  • Del Duca D, Werbowetski T, Del Maestro RF . (2004). Spheroid preparation from hanging drops: characterization of a model of brain tumor invasion. J Neurooncol 67: 295–303.

    Article  PubMed  Google Scholar 

  • Dong G, Loukinova E, Chen Z, Gangi L, Chanturita TI, Liu ET et al. (2001). Molecular profiling of transformed and metastatic murine squamous carcinoma cells by differential display and cDNA microarray reveals altered expression of multiple genes related to growth, apoptosis, angiogenesis, and the NF-kappaB signal pathway. Cancer Res 61: 4797–4808.

    CAS  PubMed  Google Scholar 

  • Elstrom RL, Bauer DE, Buzzai M, Karnauskas R, Harris MH, Plas DR et al. (2004). Akt stimulates aerobic glycolysis in cancer cells. Cancer Res 64: 3892–3899.

    Article  CAS  PubMed  Google Scholar 

  • Estelles A, Charlton CA, Blau HM . (1999). The phosphoprotein protein PEA-15 inhibits Fas- but increases TNF-R1-mediated caspase-8 activity and apoptosis. Dev Biol 216: 16–28.

    Article  CAS  PubMed  Google Scholar 

  • Formisano P, Perruolo G, Libertini S, Santopietro S, Troncone G, Raciti GA et al. (2005). Raised expression of the antiapoptotic protein ped/pea-15 increases susceptibility to chemically induced skin tumor development. Oncogene 24: 7012–7021.

    Article  CAS  PubMed  Google Scholar 

  • Formstecher E, Ramos JW, Fauquet M, Calderwood DA, Hsieh JC, Canton B et al. (2001). PEA-15 mediates cytoplasmic sequestration of ERK MAP kinase. Dev Cell 1: 239–250.

    Article  CAS  PubMed  Google Scholar 

  • Gillies RJ, Didier N, Denton M . (1986). Determination of cell number in monolayer cultures. Anal Biochem 159: 109–113.

    Article  CAS  PubMed  Google Scholar 

  • Hao C, Beguinot F, Condorelli G, Trencia A, Van Meir EG, Yong VW et al. (2001). Induction and intracellular regulation of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) mediated apoptosis in human malignant glioma cells. Cancer Res 61: 1162–1170.

    CAS  PubMed  Google Scholar 

  • Karcher S, Steiner HH, Ahmadi R, Zoubaa S, Vasvari G, Bauer H et al. (2006). Different angiogenic phenotypes in primary and secondary glioblastomas. Int J Cancer 118: 2182–2189.

    Article  CAS  PubMed  Google Scholar 

  • Kitsberg D, Formstecher E, Fauquet M, Kubes M, Cordier J, Canton B et al. (1999). Knock-out of the neural death effector domain protein PEA-15 demonstrates that its expression protects astrocytes from TNFalpha-induced apoptosis. J Neurosci 19: 8244–8251.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krueger J, Chou FL, Glading A, Schaefer E, Ginsberg MH . (2005). Phosphorylation of phosphoprotein enriched in astrocytes (PEA-15) regulates extracellular signal-regulated kinase-dependent transcription and cell proliferation. Mol Biol Cell 16: 3552–3561.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kubes M, Cordier J, Glowinski J, Girault JA, Chneiweiss H . (1998). Endothelin induces a calcium-dependent phosphorylation of PEA-15 in intact astrocytes: identification of Ser104 and Ser116 phosphorylated, respectively, by protein kinase C and calcium/calmodulin kinase II in vitro. J Neurochem 71: 1307–1314.

    Article  CAS  PubMed  Google Scholar 

  • Nelson DA, Tan TT, Rabson AB, Anderson D, Degenhardt K, White E . (2004). Hypoxia and defective apoptosis drive genomic instability and tumorigenesis. Genes Dev 18: 2095–2107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nishioka T, Oda Y, Seino Y, Yamamoto T, Inagaki N, Yano H et al. (1992). Distribution of the glucose transporters in human brain tumors. Cancer Res 52: 3972–3979.

    CAS  PubMed  Google Scholar 

  • Ramos JW, Hughes PE, Renshaw MW, Schwartz MA, Formstecher E, Chneiweiss H et al. (2000). Death effector domain protein PEA-15 potentiates Ras activation of extracellular signal receptor-activated kinase by an adhesion-independent mechanism. Mol Biol Cell 11: 2863–2872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos JW, Kojima TK, Hughes PE, Fenczik CA, Ginsberg MH . (1998). The death effector domain of PEA-15 is involved in its regulation of integrin activation. J Biol Chem 273: 33897–33900.

    Article  CAS  PubMed  Google Scholar 

  • Renault-Mihara F, Beuvon F, Iturrioz X, Canton B, De Bouard S, Leonard N et al. (2006). PEA-15 expression inhibits astrocyte migration by a PKC delta-dependent mechanism. Mol Biol Cell 17: 5141–5152.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Renganathan H, Vaidyanathan H, Knapinska A, Ramos JW . (2005). Phosphorylation of PEA-15 switches its binding specificity from ERK/MAPK to FADD. Biochem J 390: 729–735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ricci-Vitiani L, Pedini F, Mollinari C, Condorelli G, Bonci D, Bez A et al. (2004). Absence of caspase 8 and high expression of PED protect primitive neural cells from cell death. J Exp Med 200: 1257–1266.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rong Y, Durden DL, Van Meir EG, Brat DJ . (2006). ‘Pseudopalisading’ necrosis in glioblastoma: a familiar morphologic feature that links vascular pathology, hypoxia, and angiogenesis. J Neuropathol Exp Neurol 65: 529–539.

    Article  PubMed  Google Scholar 

  • Sharif A, Renault F, Beuvon F, Castellanos R, Canton B, Barbeito L et al. (2004). The expression of PEA-15 (phosphoprotein enriched in astrocytes of 15 kDa) defines subpopulations of astrocytes and neurons throughout the adult mouse brain. Neuroscience 126: 263–275.

    Article  CAS  PubMed  Google Scholar 

  • Song JH, Bellail A, Tse MC, Yong VW, Hao C . (2006). Human astrocytes are resistant to Fas ligand and tumor necrosis factor-related apoptosis-inducing ligand-induced apoptosis. J Neurosci 26: 3299–3308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stassi G, Garofalo M, Zerilli M, Ricci-Vitiani L, Zanca C, Todaro M et al. (2005). PED mediates AKT-dependent chemoresistance in human breast cancer cells. Cancer Res 65: 6668–6675.

    Article  CAS  PubMed  Google Scholar 

  • Todaro M, Zerilli M, Ricci-Vitiani L, Bini M, Perez Alea M, Maria Florena A et al. (2006). Autocrine production of interleukin-4 and interleukin-10 is required for survival and growth of thyroid cancer cells. Cancer Res 66: 1491–1499.

    Article  CAS  PubMed  Google Scholar 

  • Trencia A, Perfetti A, Cassese A, Vigliotta G, Miele C, Oriente F et al. (2003). Protein kinase B/Akt binds and phosphorylates PED/PEA-15, stabilizing its antiapoptotic action. Mol Cell Biol 23: 4511–4521.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vigliotta G, Miele C, Santopietro S, Portella G, Perfetti A, Maitan MA et al. (2004). Overexpression of the ped/pea-15 gene causes diabetes by impairing glucose-stimulated insulin secretion in addition to insulin action. Mol Cell Biol 24: 5005–5015.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Whitehurst AW, Robinson FL, Moore MS, Cobb MH . (2004). The death effector domain protein PEA-15 prevents nuclear entry of ERK2 by inhibiting required interactions. J Biol Chem 279: 12840–12847.

    Article  CAS  PubMed  Google Scholar 

  • Xiao C, Yang BF, Asadi N, Beguinot F, Hao C . (2002). Tumor necrosis factor-related apoptosis-inducing ligand-induced death-inducing signaling complex and its modulation by c-FLIP and PED/PEA-15 in glioma cells. J Biol Chem 277: 25020–25025.

    Article  CAS  PubMed  Google Scholar 

  • Ziegler A, von Kienlin M, Decorps M, Remy C . (2001). High glycolytic activity in rat glioma demonstrated in vivo by correlation peak 1H magnetic resonance imaging. Cancer Res 61: 5595–5600.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by a grant from the Deutsche Krebshilfe to WR (German Cancer Aid, Max Eder Program). We thank Ilona Demir and Karina Zipp for expert technical assistance and Christine Golde and Ulrike Lemke for advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W Roth.

Additional information

Supplementary Information accompanies the paper on the Oncogene website (http://www.nature.com/onc).

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Eckert, A., Böck, B., Tagscherer, K. et al. The PEA-15/PED protein protects glioblastoma cells from glucose deprivation-induced apoptosis via the ERK/MAP kinase pathway. Oncogene 27, 1155–1166 (2008). https://doi.org/10.1038/sj.onc.1210732

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1210732

Keywords

This article is cited by

Search

Quick links