Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review
  • Published:

Induction of genetic instability by gain-of-function p53 cancer mutants

Abstract

p53 plays critical roles in tumor suppression and the loss of its function is required for cancer progression. In this context, the p53 gene is the most commonly mutated tumor suppressor gene in human cancers. The majority of the p53 gene mutations in human cancers are missense mutations, leading to the expression of the full-length mutant p53 protein in cancer cells. In addition to the loss of tumor suppression activity, p53 cancer mutants gain new oncogenic activities to promote tumorigenesis and drug resistance. Recent studies have identified a novel gain-of-function of p53 cancer mutants in inducing genetic instability by inactivating critical tumor suppressors such as ATM. Genetic instability is a common mechanism by which cancer cells efficiently accumulate genetic mutations to promote their growth, survival and metastatic potential. Therefore, this gain-of-function of p53 cancer mutants could play important roles in tumorigenesis and drug resistance of various types of human cancers. In addition, because many cancer therapies such as radiation therapy suppress or kill cancer cells by activating ATM-dependent responses to DNA double-stranded break damage, elucidation of this gain-of-function of p53 cancer mutants will have important implications on cancer therapy.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  • Albor A, Kaku S, Kulesz-Martin M . (1998). Wild-type and mutant forms of p53 activate human topoisomerase I: a possible mechanism for gain of function in mutants. Cancer Res 58: 2091–2094.

    CAS  PubMed  Google Scholar 

  • Bakkenist CJ, Kastan MB . (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421: 499–506.

    Article  CAS  PubMed  Google Scholar 

  • Barlow C, Hirotsune S, Paylor R, Liyanage M, Eckhaus M, Collins F et al. (1996). Atm-deficient mice: a paradigm of ataxia telangiectasia. Cell 86: 159–171.

    Article  CAS  PubMed  Google Scholar 

  • Bartkova J, Horejsí Z, Koed K, Krämer A, Tort F, Zieger K et al. (2005). DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434: 864–870.

    Article  CAS  PubMed  Google Scholar 

  • Bassing CH, Suh H, Ferguson DO, Chua KF, Manis J, Eckersdorff M et al. (2003). Histone H2AX: a dosage-dependent suppressor of oncogenic translocations and tumors. Cell 114: 359–370.

    Article  CAS  PubMed  Google Scholar 

  • Ben-Porath I, Weinberg RA . (2005). The signals and pathways activating cellular senescence. Int J Biochem Cell Biol 37: 961–976.

    Article  CAS  PubMed  Google Scholar 

  • Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH, Schlegelberger B et al. (2005). Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436: 660–665.

    Article  CAS  PubMed  Google Scholar 

  • Brugarolas J, Chandrasekaran C, Gordon JI, Beach D, Jacks T, Hannon GJ . (1995). Radiation-induced cell cycle arrest compromised by p21 deficiency. Nature 377: 552–557.

    Article  CAS  PubMed  Google Scholar 

  • Campisi J . (2005). Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell 120: 513–522.

    Article  CAS  PubMed  Google Scholar 

  • Carson CT, Schwartz RA, Stracker TH, Lilley CE, Lee DV, Weitzman MD . (2003). The Mre11 complex is required for ATM activation and the G2/M checkpoint. EMBO J 22: 6610–6620.

    Article  CAS  PubMed  Google Scholar 

  • Celeste A, Difilippantonio S, Difilippantonio MJ, Fernandez-Capetillo O, Pilch DR, Sedelnikova OA et al. (2003). H2AX haploinsufficiency modifies genomic stability and tumor susceptibility. Cell 114: 371–383.

    Article  CAS  PubMed  Google Scholar 

  • Chao C, Hergenhahn M, Kaeser MD, Wu Z, Saito S, Iggo R et al. (2003). Cell type- and promoter-specific roles of Ser18 phosphorylation in regulating p53 responses. J Biol Chem 278: 41028–41033.

    Article  CAS  PubMed  Google Scholar 

  • Chao C, Herr D, Chun J, Xu Y . (2006). Ser18 and 23 phosphorylation is required for p53-dependent apoptosis and tumor suppression. EMBO J 25: 2615–2622.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chao C, Saito S, Kang J, Anderson CW, Appella E, Xu Y . (2000). p53 transcriptional activity is essential for p53-dependent apoptosis following DNA damage. EMBO J 19: 4967–4975.

    Article  CAS  PubMed  Google Scholar 

  • Chen Z, Trotman LC, Shaffer D, Lin HK, Dotan ZA, Niki M et al. (2005). Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436: 725–730.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deng C, Zhang P, Harper JW, Elledge SJ, Leder P . (1995). Mice lacking p21CIP1/WAF1 undergo normal development, but are defective in G1 checkpoint control. Cell 82: 675–684.

    Article  CAS  PubMed  Google Scholar 

  • Difilippantonio S, Celeste A, Fernandez-Capetillo O, Chen HT, Reina San Martin B, Van Laethem F et al. (2005). Role of Nbs1 in the activation of the Atm kinase revealed in humanized mouse models. Nat Cell Biol 7: 675–685.

    Article  CAS  PubMed  Google Scholar 

  • Dittmer D, Pati S, Zambetti G, Chu S, Teresky AK, Moore M et al. (1993). Gain of function mutations in p53. Nat Genet 4: 42–46.

    CAS  Google Scholar 

  • el-Deiry WS, Kern SE, Pietenpol JA, Kinzler KW, Vogelstein B . (1992). Definition of a consensus binding site for p53. Nat Genet 1: 45–49.

    Article  CAS  PubMed  Google Scholar 

  • el-Deiry WS, Tokino T, Velculescu VE, Levy DB, Parsons R, Trent JM et al. (1993). WAF1, a potential mediator of p53 tumor suppression. Cell 75: 817–825.

    Article  CAS  PubMed  Google Scholar 

  • Falck J, Coates J, Jackson SP . (2005). Conserved modes of recruitment of ATM, ATR and DNA-PKcs to sites of DNA damage. Nature 434: 605–611.

    Article  CAS  PubMed  Google Scholar 

  • Farmer G, Bargonetti J, Zhu H, Friedman P, Prywes R, Prives C . (1992). Wild-type p53 activates transcription in vitro. Nature 358: 83–86.

    Article  CAS  PubMed  Google Scholar 

  • Feng L, Hollstein M, Xu Y . (2006). Ser46 phosphorylation regulates p53-dependent apoptosis and replicative senescence. Cell Cycle 5: 2812–2819.

    Article  CAS  PubMed  Google Scholar 

  • Finlay CA, Hinds PW, Levine AJ . (1989). The p53 proto-oncogene can act as a suppressor of transformation. Cell 57: 1083–1093.

    Article  CAS  PubMed  Google Scholar 

  • Flores ER, Sengupta S, Miller JB, Newman JJ, Bronson R, Crowley D et al. (2005). Tumor predisposition in mice mutant for p63 and p73: evidence for broader tumor suppressor functions for the p53 family. Cancer Cell 7: 363–373.

    Article  CAS  PubMed  Google Scholar 

  • Franco S, Alt FW, Manis JP . (2006). Pathways that suppress programmed DNA breaks from progressing to chromosomal breaks and translocations. DNA Repair (Amst) 5: 1030–1041.

    Article  CAS  PubMed  Google Scholar 

  • Gaiddon C, Lokshin M, Ahn J, Zhang T, Prives C . (2001). A subset of tumor-derived mutant forms of p53 down-regulate p63 and p73 through a direct interaction with the p53 core domain. Mol Cell Biol 21: 1874–1887.

    Article  CAS  PubMed  Google Scholar 

  • Goldie J . (2001). Drug resistance in cancer: a perspective. Cancer Metastasis Rev 20: 63–68.

    Article  CAS  PubMed  Google Scholar 

  • Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A, Liloglou T et al. (2005). Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434: 907–913.

    CAS  PubMed Central  Google Scholar 

  • Gudkov A . (2003). Microarray analysis of p53-mediated transcription: multi-thousand piece puzzle or invitation to collective thinking. Cancer Biol Ther 2: 444–445.

    Article  PubMed  Google Scholar 

  • Hainaut P, Hollstein M . (2000). p53 and human cancer: the first ten thousand mutations. Adv Cancer Res 77: 81–137.

    Article  CAS  PubMed  Google Scholar 

  • Hergenhahn M, Luo JL, Hollstein M . (2004). p53 designer genes for the modern mouse. Cell Cycle 3: 738–741.

    Article  CAS  PubMed  Google Scholar 

  • Hermeking H, Lengauer C, Polyak K, He TC, Zhang L, Thiagalingam S et al. (1997). 14-3-3 Sigma is a p53-regulated inhibitor of G2/M progression. Mol Cell 1: 3–11.

    Article  CAS  PubMed  Google Scholar 

  • Hinds PW, Finlay CA, Quartin RS, Baker SJ, Fearon ER, Vogelstein B et al. (1990). Mutant p53 DNA clones from human colon carcinomas cooperate with ras in transforming primary rat cells: a comparison of the "hot spot" mutant phenotypes. Cell Growth Differ 1: 571–580.

    CAS  PubMed Central  Google Scholar 

  • Hopfner KP, Craig L, Moncalian G, Zinkel RA, Usui T, Owen BA et al. (2002). The Rad50 zinc-hook is a structure joining Mre11 complexes in DNA recombination and repair. Nature 418: 562–566.

    Article  CAS  PubMed  Google Scholar 

  • Hopfner KP, Karcher A, Craig L, Woo TT, Carney JP, Tainer JA . (2001). Structural biochemistry and interaction architecture of the DNA double-strand break repair Mre11 nuclease and Rad50-ATPase. Cell 105: 473–485.

    Article  CAS  PubMed  Google Scholar 

  • Jeffers JR, Parganas E, Lee Y, Yang C, Wang J, Brennan J et al. (2003). Puma is an essential mediator of p53-dependent and -independent apoptotic pathways. Cancer Cell 4: 321–328.

    Article  CAS  PubMed  Google Scholar 

  • Joerger AC, Fersht AR . (2007). Structure-function-rescue: the diverse nature of common p53 cancer mutants. Oncogene 26: 2226–2242.

    Article  CAS  PubMed  Google Scholar 

  • Johnson TM, Hammond EM, Giaccia A, Attardi LD . (2005). The p53QS transactivation-deficient mutant shows stress-specific apoptotic activity and induces embryonic lethality. Nat Genet 37: 145–152.

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Bronson RT, Xu Y . (2002). Targeted disruption of NBS1 reveals its roles in mouse development and DNA repair. EMBO J 21: 1447–1455.

    Article  CAS  PubMed  Google Scholar 

  • Kang J, Ferguson D, Song H, Bassing C, Eckersdorff M, Alt FW et al. (2005). Functional interaction of H2AX, NBS1, and p53 in ATM-dependent DNA damage responses and tumor suppression. Mol Cell Biol 25: 661–670.

    Article  CAS  PubMed  Google Scholar 

  • Kern SE, Pietenpol JA, Thiagalingam S, Seymour A, Kinzler KW, Vogelstein B . (1992). Oncogenic forms of p53 inhibit p53-regulated gene expression. Science 256: 827–830.

    Article  CAS  PubMed  Google Scholar 

  • Kitagawa R, Bakkenist CJ, McKinnon PJ, Kastan MB . (2004). Phosphorylation of SMC1 is a critical downstream event in the ATM-NBS1-BRCA1 pathway. Genes Dev 18: 1423–1438.

    Article  CAS  PubMed  Google Scholar 

  • Ko LJ, Prives C . (1996). p53: puzzle and paradigm. Genes Dev 10: 1054–1072.

    Article  CAS  PubMed  Google Scholar 

  • Kops G, Weaver BA, Cleveland DW . (2005). On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev Cancer 5: 773–785.

    Article  CAS  PubMed  Google Scholar 

  • Kortlever RM, Higgins PJ, Bernards R . (2006). Plasminogen activator inhibitor-1 is a critical downstream target of p53 in the induction of replicative senescence. Nat Cell Biol 8: 877–884.

    Article  CAS  PubMed  Google Scholar 

  • Lang GA, Iwakuma T, Suh YA, Liu G, Rao VA, Parant JM et al. (2004). Gain of function of a p53 hot spot mutation in a mouse model of Li–Fraumeni syndrome. Cell 119: 861–872.

    Article  CAS  PubMed  Google Scholar 

  • Lee JH, Paull TT . (2005). ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex. Science 308: 551–554.

    Article  CAS  Google Scholar 

  • Li R, Sutphin PD, Schwartz D, Matas D, Almog N, Wolkowicz R et al. (1998). Mutant p53 protein expression interferes with p53-independent apoptotic pathways. Oncogene 16: 3269–3277.

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Prives C . (2007). Are interactions with p63 and p73 involved in mutant p53 gain of oncogenic function? Oncogene 26: 2220–2225.

    Article  CAS  PubMed  Google Scholar 

  • Lin T, Chao C, Saito S, Mazur SJ, Murphy ME, Appella E et al. (2005). p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression. Nat Cell Biol 7: 165–171.

    Article  CAS  PubMed  Google Scholar 

  • Luo JL, Yang Q, Tong WM, Hergenhahn M, Wang ZQ, Hollstein M . (2001). Knock-in mice with a chimeric human/murine p53 gene develop normally and show wild-type p53 responses to DNA damaging agents: a new biomedical research tool. Oncogene 20: 320–328.

    Article  CAS  PubMed  Google Scholar 

  • Meletis K, Wirta V, Hede SM, Nistér M, Lundeberg J, Frisén J . (2006). p53 suppresses the self-renewal of adult neural stem cells. Development 133: 363–369.

    Article  CAS  PubMed  Google Scholar 

  • Mitelman F, Johansson B, Mertens F . (2007). The impact of translocations and gene fusions on cancer causation. Nat Rev Cancer 7: 233–245.

    Article  CAS  PubMed  Google Scholar 

  • Murphy ME . (2003). The thousand doors that lead to death: p53-dependent repression and apoptosis. Cancer Biol Ther 2: 381–382.

    Article  PubMed  Google Scholar 

  • Nakano K, Vousden KH . (2001). PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7: 683–694.

    Article  CAS  PubMed  Google Scholar 

  • Olive KP, Tuveson DA, Ruhe ZC, Yin B, Willis NA, Bronson RT et al. (2004). Mutant p53 gain of function in two mouse models of Li–Fraumeni syndrome. Cell 119: 847–860.

    Article  CAS  PubMed  Google Scholar 

  • Preuss U, Kreutzfeld R, Scheidtmann KH . (2000). Tumor-derived p53 mutant C174Y is a gain-of-function mutant which activates the fos promoter and enhances colony formation. Int J Cancer 88: 162–171.

    Article  CAS  PubMed  Google Scholar 

  • Riballo E, Kuhne M, Rief N, Doherty A, Smith GC, Recio MJ et al. (2004). A pathway of double-strand break rejoining dependent upon ATM, Artemis, and proteins locating to gamma-H2AX foci. Mol Cell 16: 715–724.

    Article  CAS  PubMed  Google Scholar 

  • Savitsky K, Bar-Shira A, Gilad S, Rotman G, Ziv Y, Vanagaite L et al. (1995). A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268: 1749–1753.

    Article  CAS  PubMed  Google Scholar 

  • Scharer E, Iggo R . (1992). Mammalian p53 can function as a transcription factor in yeast. Nucleic Acids Res 20: 1539–1545.

    Article  CAS  PubMed  Google Scholar 

  • Shiloh Y . (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3: 155–168.

    Article  CAS  PubMed  Google Scholar 

  • Shiloh Y, Kastan MB . (2001). ATM: genome stability, neuronal development, and cancer cross paths. Adv Cancer Res 83: 209–254.

    Article  CAS  PubMed  Google Scholar 

  • Slingerland JM, Jenkins JR, Benchimol S . (1993). The transforming and suppressor functions of p53 alleles: effects of mutations that disrupt phosphorylation, oligomerization and nuclear translocation. EMBO J 12: 1029–1037.

    Article  CAS  PubMed  Google Scholar 

  • Song H, Hollstein M, Xu Y . (2007). p53 gain-of-function cancer mutants induce genetic instability by inactivating ATM. Nat Cell Biol 9: 573–580.

    Article  CAS  PubMed  Google Scholar 

  • Stiewe T . (2007). The p53 family in differentiation and tumorigenesis. Nat Rev Cancer 7: 165–168.

    Article  CAS  Google Scholar 

  • Strano S, Dell'Orso S, Di Agostino S, Fontemaggi G, Sacchi A, Blandino G . (2007). Mutant p53: an oncogenic transcription factor. Oncogene 26: 2212–2219.

    Article  CAS  PubMed  Google Scholar 

  • Strano S, Fontemaggi G, Costanzo A, Rizzo MG, Monti O, Baccarini A et al. (2002). Physical interaction with human tumor-derived p53 mutants inhibits p63 activities. J Biol Chem 277: 18817–18826.

    Article  CAS  PubMed  Google Scholar 

  • Taubert H, Meye A, Wurl P . (1996). Prognosis is correlated with p53 mutation type for soft tissue sarcoma patients. Cancer Res 56: 4134–4136.

    CAS  PubMed  Google Scholar 

  • Theunissen JW, Kaplan MI, Hunt PA, Williams BR, Ferguson DO, Alt FW et al. (2003). Checkpoint failure and chromosomal instability without lymphomagenesis in Mre11(ATLD1/ATLD1) mice. Mol Cell 12: 1511–1523.

    Article  CAS  PubMed  Google Scholar 

  • Uziel T, Lerenthal Y, Moyal L, Andegeko Y, Mittelman L, Shiloh Y . (2003). Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22: 5612–5621.

    Article  CAS  PubMed  Google Scholar 

  • Vega FJ, Iniesta P, Caldes T, Sanchez A, Lopez JA, de Juan C et al. (1997). p53 exon 5 mutations as a prognostic indicator of shortened survival in non-small-cell lung cancer. Br J Cancer 76: 44–51.

    Article  CAS  PubMed  Google Scholar 

  • Villunger A, Michalak EM, Coultas L, Mullauer F, Bock G, Ausserlechner MJ et al. (2003). p53- and drug-induced apoptotic responses mediated by BH3-only proteins puma and noxa. Science 302: 1036–1038.

    Article  CAS  PubMed  Google Scholar 

  • Wei CL, Wu Q, Vega VB, Chiu KP, Ng P, Zhang T et al. (2006). A global map of p53 transcription-factor binding sites in the human genome. Cell 124: 207–219.

    Article  CAS  PubMed  Google Scholar 

  • Weisz L, Oren M, Rotter V . (2007). Transcription regulation by mutant p53. Oncogene 26: 2202–2211.

    Article  CAS  PubMed  Google Scholar 

  • Woerner S, Kloor M, von Knebel Doeberitz M, Gebert JF . (2006). Microsatellite instability in the development of DNA mismatch repair deficient tumors. Cancer Biomarker 2: 69–86.

    Article  CAS  Google Scholar 

  • Xu Y . (2005). A new role for p53 in maintaining genetic stability in embryonic stem cells. Cell Cycle 4: 363–364.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y . (2006). DNA damage: a trigger of innate immunity but a requirement for adaptive immune homeostasis. Nat Rev Immunol 6: 261–270.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Ashley T, Brainerd EE, Bronson RT, Meyn MS, Baltimore D . (1996). Targeted disruption of ATM leads to growth retardation, chromosomal fragmentation during meiosis, immune defects, and thymic lymphoma. Genes Dev 10: 2411–2422.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Baltimore D . (1996). Dual roles of ATM in the cellular response to radiation and in cell growth control. Genes Dev 10: 2401–2410.

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Yang EM, Brugarolas J, Jacks T, Baltimore D . (1998). Involvement of p53 and p21 in cellular defects and tumorigenesis in atm−/− mice. Mol Cell Biol 18: 4385–4390.

    Article  CAS  PubMed  Google Scholar 

  • Yee KS, Vousden KH . (2005). Complicating the complexity of p53. Carcinogenesis 26: 1317–1322.

    Article  CAS  PubMed  Google Scholar 

  • You Z, Chahwan C, Bailis J, Hunter T, Russell P . (2005). ATM activation and its recruitment to damaged DNA require binding to the C terminus of Nbs1. Mol Cell Biol 25: 5363–5379.

    Article  CAS  PubMed  Google Scholar 

  • Yu J, Zhang L, Hwang PM, Kinzler KW, Vogelstein B . (2001). PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7: 673–682.

    Article  CAS  PubMed  Google Scholar 

  • Zalcenstein A, Stambolsky P, Weisz L, Müller M, Wallach D, Goncharov TM et al. (2003). Mutant p53 gain of function: repression of CD95(Fas/APO-1) gene expression by tumor-associated p53 mutants. Oncogene 22: 5667–5676.

    Article  CAS  PubMed  Google Scholar 

  • Zalcenstein A, Weisz L, Stambolsky P, Bar J, Rotter V, Oren M . (2006). Repression of the MSP/MST-1 gene contributes to the antiapoptotic gain of function of mutant p53. Oncogene 25: 359–369.

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Rowley JD . (2006). Chromatin structural elements and chromosomal translocations in leukemia. DNA Repair (Amst) 5: 1282–1297.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr Mike Fried for critically reading this article. We apologize to authors whose findings are not cited in this paper because of space limitation. This work was supported by grants from DOD Prostate Cancer Research Program (W81XWH-05-1-0006) and NIH (CA94254) to YX.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y Xu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xu, Y. Induction of genetic instability by gain-of-function p53 cancer mutants. Oncogene 27, 3501–3507 (2008). https://doi.org/10.1038/sj.onc.1211023

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.onc.1211023

Keywords

This article is cited by

Search

Quick links