Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia

ABSTRACT

The central role of 5,10-methylenetetrahydrofolate reductase (MTHFR) and methylenetetrahydrofolate dehydrogenase (MTHFD1) in folate metabolism renders polymorphisms in genes encoding these enzymes potential modulators of therapeutic response to antifolate chemotherapeutics. The analysis of 201 children treated with methotrexate for childhood acute lymphoblastic leukemia (ALL) showed that patients with either the MTHFR T677A1298 haplotype or MTHFD1 A1958 variant had a lower probability of event-free survival (EFS) in univariate analysis (hazard ratio (HR)=2.2, 95% confidence interval (CI), 1.0–4.7 and 2.8, 95% CI, 1.1–7.3, respectively). Multivariate analysis supported only the role of the MTHFR variant (HR=2.2, 95% CI, 0.9–5.6). However, the association of both genes with ALL outcome appears to be more obvious in the presence of another event-predisposing variant belonging to the same path of drug action. The combined effect of a thymidylate synthase (TS) triple repeat associated with increased TS levels, with either the MTHFR T677A1298 haplotype or MTHFD1 A1958 allele, resulted in a highly significant reduction of EFS (multivariate HR=9.0, 95% CI, 1.9–42.8 and 8.9, 95% CI, 1.8–44.6, respectively). These results reveal the role of gene–gene interactions within a folate pathway, and how they can correlate with relapse probabilities in ALL patients.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

Abbreviations

ALL:

acute lymphoblastic leukemia

CML:

chronic myelogenic leukemia

DFS:

disease-free survival

EFS:

event-free survival

10-formyl-THF:

10-formyl tetrahydrofolate

5-methyl-THF:

5-methyltetrahydrofolate

5,10-methylene-THF:

5,10-methylenetetrahydrofolate

MTHFD1:

methylenetetrahydrofolate dehydrogenase

MTHFR:

5,10-methylenetetrahydrofolate reductase

MTX:

methotrexate

NTD:

neural tube defects

OS:

overall survival

WBC:

white blood cell

References

  1. Shane B . Folylpolyglutamate synthesis and role in the regulation of one-carbon metabolism. Vitam Horm 1989; 45: 263–335.

    Article  CAS  PubMed  Google Scholar 

  2. Schwahn B, Rozen R . Polymorphisms in the methylenetetrahydrofolate reductase gene: clinical consequences. Am J Pharmacogenomics 2001; 1: 189–201.

    Article  CAS  PubMed  Google Scholar 

  3. Hum DW, Bell AW, Rozen R, MacKenzie RE . Primary structure of a human trifunctional enzyme. Isolation of a cDNA encoding methylenetetrahydrofolate dehydrogenase–methenyltetrahydrofolate cyclohydrolase–formyltetrahydrofolate synthetase. J Biol Chem 1988; 263: 15946–15950.

    CAS  PubMed  Google Scholar 

  4. Frosst P, Blom HJ, Milos R, Goyette P, Sheppard CA, Matthews RG et al. A candidate genetic risk factor for vascular disease: a common mutation in methylenetetrahydrofolate reductase. Nat Genet 1995; 10: 111–113.

    Article  CAS  PubMed  Google Scholar 

  5. Weisberg I, Tran P, Christensen B, Sibani S, Rozen R . A second genetic polymorphism in methylenetetrahydrofolate reductase (MTHFR) associated with decreased enzyme activity. Mol Genet Metab 1998; 64: 169–172.

    Article  CAS  PubMed  Google Scholar 

  6. van der Put NM, Gabreels F, Stevens EM, Smeitink JA, Trijbels FJ, Eskes TK et al. A second common mutation in the methylenetetrahydrofolate reductase gene: an additional risk factor for neural-tube defects? Am J Hum Genet 1998; 62: 1044–1051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Weisberg IS, Jacques PF, Selhub J, Bostom AG, Chen Z, Curtis Ellison R et al. The 1298A–>C polymorphism in methylenetetrahydrofolate reductase (MTHFR): in vitro expression and association with homocysteine. Atherosclerosis 2001; 156: 409–415.

    Article  CAS  PubMed  Google Scholar 

  8. van der Put NM, Steegers-Theunissen RP, Frosst P, Trijbels FJ, Eskes TK, van den Heuvel LP et al. Mutated methylenetetrahydrofolate reductase as a risk factor for spina bifida. Lancet 1995; 346: 1070–1071.

    Article  CAS  PubMed  Google Scholar 

  9. Engbersen AM, Franken DG, Boers GH, Stevens EM, Trijbels FJ, Blom HJ . Thermolabile 5,10-methylenetetrahydrofolate reductase as a cause of mild hyperhomocysteinemia. Am J Hum Genet 1995; 56: 142–150.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Kluijtmans LA, van den Heuvel LP, Boers GH, Frosst P, Stevens EM, van Oost BA et al. Molecular genetic analysis in mild hyperhomocysteinemia: a common mutation in the methylenetetrahydrofolate reductase gene is a genetic risk factor for cardiovascular disease. Am J Hum Genet 1996; 58: 35–41.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Robien K, Ulrich CM . 5,10-Methylenetetrahydrofolate reductase polymorphisms and leukemia risk: a HuGE minireview. Am J Epidemiol 2003; 157: 571–582.

    Article  PubMed  Google Scholar 

  12. de Jong MM, Nolte IM, te Meerman GJ, van der Graaf WT, de Vries EG, Sijmons RH et al. Low-penetrance genes and their involvement in colorectal cancer susceptibility. Cancer Epidemiol Biomarkers Prev 2002; 11: 1332–1352.

    CAS  PubMed  Google Scholar 

  13. Taub JW, Matherly LH, Ravindranath Y, Kaspers GJ, Rots MG, Zantwijk CH . Polymorphisms in methylenetetrahydrofolate reductase and methotrexate sensitivity in childhood acute lymphoblastic leukemia. Leukemia 2002; 16: 764–765.

    Article  CAS  PubMed  Google Scholar 

  14. Chiusolo P, Reddiconto G, Casorelli I, Laurenti L, Sora F, Mele L et al. Preponderance of methylenetetrahydrofolate reductase C677T homozygosity among leukemia patients intolerant to methotrexate. Ann Oncol 2002; 13: 1915–1918.

    Article  CAS  PubMed  Google Scholar 

  15. Ulrich CM, Yasui Y, Storb R, Schubert MM, Wagner JL, Bigler J et al. Pharmacogenetics of methotrexate: toxicity among marrow transplantation patients varies with the methylenetetrahydrofolate reductase C677T polymorphism. Blood 2001; 98: 231–234.

    Article  CAS  PubMed  Google Scholar 

  16. Urano W, Taniguchi A, Yamanaka H, Tanaka E, Nakajima H, Matsuda Y et al. Polymorphisms in the methylenetetrahydrofolate reductase gene were associated with both the efficacy and the toxicity of methotrexate used for the treatment of rheumatoid arthritis, as evidenced by single locus and haplotype analyses. Pharmacogenetics 2002; 12: 183–190.

    Article  CAS  PubMed  Google Scholar 

  17. Hol FA, van der Put NM, Geurds MP, Heil SG, Trijbels FJ, Hamel BC et al. Molecular genetic analysis of the gene encoding the trifunctional enzyme MTHFD (methylenetetrahydrofolate-dehydrogenase, methenyltetrahydrofolate-cyclohydrolase, formyltetrahydrofolate synthetase) in patients with neural tube defects. Clin Genet 1998; 53: 119–125.

    Article  CAS  PubMed  Google Scholar 

  18. Brody LC, Conley M, Cox C, Kirke PN, McKeever MP, Mills JL et al. A polymorphism, R653Q, in the trifunctional enzyme methylenetetrahydrofolate dehydrogenase/methenyltetrahydrofolate cyclohydrolase/formyltetrahydrofolate synthetase is a maternal genetic risk factor for neural tube defects: report of the Birth Defects Research Group. Am J Hum Genet 2002; 71: 1207–1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Allegra CJ, Chabner BA, Drake JC, Lutz R, Rodbard D, Jolivet J . Enhanced inhibition of thymidylate synthase by methotrexate polyglutamates. J Biol Chem 1985; 260: 9720–9726.

    CAS  PubMed  Google Scholar 

  20. Baram J, Chabner BA, Drake JC, Fitzhugh AL, Sholar PW, Allegra CJ . Identification and biochemical properties of 10-formyldihydrofolate, a novel folate found in methotrexate-treated cells. J Biol Chem 1988; 263: 7105–7111.

    CAS  PubMed  Google Scholar 

  21. Chu E, Drake JC, Boarman D, Baram J, Allegra CJ . Mechanism of thymidylate synthase inhibition by methotrexate in human neoplastic cell lines and normal human myeloid progenitor cells. J Biol Chem 1990; 265: 8470–8478.

    CAS  PubMed  Google Scholar 

  22. Sakamoto S, Niina M, Takaku F . Thymidylate synthetase activity in bone marrow cells in pernicious anemia. Blood 1975; 46: 699–704.

    CAS  PubMed  Google Scholar 

  23. Horie N, Aiba H, Oguro K, Hojo H, Takeishi K . Functional analysis and DNA polymorphism of the tandemly repeated sequences in the 5′-terminal regulatory region of the human gene for thymidylate synthase. Cell Struct Funct 1995; 20: 191–197.

    Article  CAS  PubMed  Google Scholar 

  24. Krajinovic M, Costea I, Chiasson S . Polymorphism of the thymidylate synthase gene and outcome of acute lymphoblastic leukaemia. Lancet 2002; 359: 1033–1034.

    Article  CAS  PubMed  Google Scholar 

  25. Kim YI . Folate and cancer prevention: a new medical application of folate beyond hyperhomocysteinemia and neural tube defects. Nutr Rev 1999; 57: 314–321.

    CAS  PubMed  Google Scholar 

  26. Blount BC, Mack MM, Wehr CM, MacGregor JT, Hiatt RA, Wang G et al. Folate deficiency causes uracil misincorporation into human DNA and chromosome breakage: implications for cancer and neuronal damage. Proc Natl Acad Sci USA 1997; 94: 3290–3295.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Messmann RA, Allegra CJ . Antifolates. In: Chabner BA, Longo DL (ed) Cancer, Chemotherapy and Biotherapy (Principles and Practice). Lippincott, Williams & Wilkins: Philadelphia 2001.

    Google Scholar 

  28. Toffoli G, Russo A, Innocenti F, Corona G, Tumolo S, Sartor F et al. Effect of methylenetetrahydrofolate reductase 677C–>T polymorphism on toxicity and homocysteine plasma level after chronic methotrexate treatment of ovarian cancer patients. Int J Cancer 2003; 103: 294–299.

    Article  CAS  PubMed  Google Scholar 

  29. Kumagai K, Hiyama K, Oyama T, Maeda H, Kohno N . Polymorphisms in the thymidylate synthase and methylenetetrahydrofolate reductase genes and sensitivity to the low-dose methotrexate therapy in patients with rheumatoid arthritis. Int J Mol Med 2003; 11: 593–600.

    CAS  PubMed  Google Scholar 

  30. Efferth T, Verdorfer I, Miyachi H, Sauerbrey A, Drexler HG, Chitambar CR et al. Genomic imbalances in drug-resistant T-cell acute lymphoblastic CEM leukemia cell lines. Blood Cells Mol Dis 2002; 29: 1–13.

    Article  CAS  PubMed  Google Scholar 

  31. Jolivet J, Cowan KH, Curt GA, Clendeninn NJ, Chabner BA . The pharmacology and clinical use of methotrexate. N Engl J Med 1983; 309: 1094–1104.

    Article  CAS  PubMed  Google Scholar 

  32. Matherly LH, Barlowe CK, Goldman ID . Antifolate polyglutamylation and competitive drug displacement at dihydrofolate reductase as important elements in leucovorin rescue in L1210 cells. Cancer Res 1986; 46: 588–593.

    CAS  PubMed  Google Scholar 

  33. Bunni M, Doig MT, Donato H, Kesavan V, Priest DG . Role of methylenetetrahydrofolate depletion in methotrexate-mediated intracellular thymidylate synthesis inhibition in cultured L1210 cells. Cancer Res 1988; 48: 3398–3404.

    CAS  PubMed  Google Scholar 

  34. Skibola CF, Smith MT, Kane E, Roman E, Rollinson S, Cartwright RA et al. Polymorphisms in the methylenetetrahydrofolate reductase gene are associated with susceptibility to acute leukemia in adults. Proc Natl Acad Sci USA 1999; 96: 12810–12815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Skibola CF, Smith MT, Hubbard A, Shane B, Roberts AC, Law GR et al. Polymorphisms in the thymidylate synthase and serine hydroxymethyltransferase genes and risk of adult acute lymphocytic leukemia. Blood 2002; 99: 3786–3791.

    Article  CAS  PubMed  Google Scholar 

  36. Wiemels JL, Smith RN, Taylor GM, Eden OB, Alexander FE, Greaves MF . Methylenetetrahydrofolate reductase (MTHFR) polymorphisms and risk of molecularly defined subtypes of childhood acute leukemia. Proc Natl Acad Sci USA 2001; 98: 4004–4009.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Anguera MC, Suh JR, Ghandour H, Nasrallah IM, Selhub J, Stover PJ . Methenyltetrahydrofolate synthetase regulates folate turnover and accumulation. J Biol Chem 2003; 278: 29856–29862.

    Article  CAS  PubMed  Google Scholar 

  38. Herbig K, Chiang EP, Lee LR, Hills J, Shane B, Stover PJ . Cytoplasmic serine hydroxymethyltransferase mediates competition between folate-dependent deoxyribonucleotide and S-adenosylmethionine biosyntheses. J Biol Chem 2002; 277: 38381–38389.

    Article  CAS  PubMed  Google Scholar 

  39. Stover PJ, Chen LH, Suh JR, Stover DM, Keyomarsi K, Shane B . Molecular cloning, characterization, and regulation of the human mitochondrial serine hydroxymethyltransferase gene. J Biol Chem 1997; 272: 1842–1848.

    Article  CAS  PubMed  Google Scholar 

  40. Di Pietro E, Sirois J, Tremblay ML, MacKenzie RE . Mitochondrial NAD-dependent methylenetetrahydrofolate dehydrogenase-methenyltetrahydrofolate cyclohydrolase is essential for embryonic development. Mol Cell Biol 2002; 22: 4158–4166.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Laverdiere C, Chiasson S, Costea I, Moghrabi A, Krajinovic M . Polymorphism G80A in the reduced folate carrier gene and its relationship to methotrexate plasma levels and outcome of childhood acute lymphoblastic leukemia. Blood 2002; 100: 3832–3834.

    Article  PubMed  Google Scholar 

  42. Labuda D, Krajinovic M, Richer C, Skoll A, Sinnett H, Yotova V et al. Rapid detection of CYP1A1, CYP2D6, and NAT variants by multiplex polymerase chain reaction and allele-specific oligonucleotide assay. Anal Biochem 1999; 275: 84–92.

    Article  CAS  PubMed  Google Scholar 

  43. Costea I, Moghrabi A, Krajinovic M . The influence of cyclin D1 (CCND1) 870A>G polymorphism and CCND1-thymidylate synthase (TS) gene–gene interaction on the outcome of childhood ALL. Pharmacogenetics 2003; 13: 577–580.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are indebted to all patients and their parents who consented to participate in this study. We are grateful to our colleagues Damian Labuda and Daniel Sinnett for discussion and biological material, Mark Bernstein for facilitating access to clinical data and Alan Lovell for critical reading of the manuscript. MK is a scholar of the Fonds de la Recherche en Santé du Québec. EL-B is a recipient of the studentship from the Leukemia Research Funds of Canada. The Canadian Institutes of Health Research, Leukemia Research Fund of Canada and Fondation de l'Hôpital Sainte-Justine supported this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M Krajinovic.

Additional information

DUALITY OF INTEREST

None declared

Rights and permissions

Reprints and permissions

About this article

Cite this article

Krajinovic, M., Lemieux-Blanchard, É., Chiasson, S. et al. Role of polymorphisms in MTHFR and MTHFD1 genes in the outcome of childhood acute lymphoblastic leukemia. Pharmacogenomics J 4, 66–72 (2004). https://doi.org/10.1038/sj.tpj.6500224

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500224

Keywords

This article is cited by

Search

Quick links