Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Identification and characterization of novel sequence variations in the cytochrome P4502D6 (CYP2D6) gene in African Americans

A Corrigendum to this article was published on 25 July 2005

Abstract

Cytochrome P4502D6 (CYP2D6) genotyping reliably predicts poor metabolizer phenotype in Caucasians, but is less accurate in African Americans. To evaluate discordance we have observed in phenotype to genotype correlation studies, select African American subjects were chosen for complete resequencing of the CYP2D6 gene including 4.2 kb of the CYP2D7-2D6 intergenic region. Comparisons were made to a CYP2D6*1 reference sequence revealing novel SNPs in the upstream, coding and intervening sequences. These sequence variations, defining four functional alleles (CYP2D6*41B, *45A and B and *46), were characterized for their ability to influence splice site strength, transcription level or catalytic protein activity. Furthermore, their frequency was determined in a population of 251 African Americans. A −692TGTG deletion (CYP2D6*45B) did not significantly decrease gene expression, nor could any other upstream SNP explain a genotype-discordant case. CYP2D6*45 and *46 have a combined frequency of 4% and can be identified by a common SNP. Carriers are predicted to exhibit an extensive or intermediate CYP2D6 phenotype.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Scordo MG, Spina E . Cytochrome P450 polymorphisms and response to antipsychotic therapy. Pharmacogenomics 2002; 3: 201–218.

    Article  CAS  PubMed  Google Scholar 

  2. Yu AM, Idle JR, Herraiz T, Kupfer A, Gonzalez FJ . Screening for endogenous substrates reveals that CYP2D6 is a 5-methoxyindolethylamine O-demethylase. Pharmacogenetics 2003; 13: 307–319.

    Article  CAS  PubMed  Google Scholar 

  3. Yu AM, Idle JR, Krausz KW, Kupfer A, Gonzalez FJ . Contribution of individual cytochrome P450 isozymes to the O-demethylation of the psychotropic beta-carboline alkaloids harmaline and harmine. J Pharmacol Exp Ther 2003; 305: 315–322.

    Article  CAS  PubMed  Google Scholar 

  4. http://www.imm.ki.se/CYPalleles/default.htmCytochrome.

  5. Sachse C, Brockmöller J, Bauer S, Roots I . Cytochrome P450 2D6 variants in a Caucasian population: allele frequencies and phenotypic consequences. Am J Hum Genet 1997; 60: 284–295.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Griese E-U, Zanger UM, Brudermanns U, Gaedigk A, Mikus G, Mörike K et al. Assessment of the predictive power of genotypes for the in vivo catalytic function of CYP2D6 in a Caucasian population. Pharmacogenetics 1998; 8: 15–26.

    Article  CAS  PubMed  Google Scholar 

  7. Gaedigk A, Gotschall RR, Forbes NS, Simon SD, Leeder JS . Optimization of cytochrome P4502D6 (CYP2D6) phenotype assignment using a genotyping algorithm based on allele frequency data. Pharmacogenetics 1999; 9: 669–682.

    Article  CAS  PubMed  Google Scholar 

  8. Chou W-H, Yan F-X, Robbins-Weilert DK, Ryder TB, Liu WW, Perbost C et al. Comparison of two CYP2D6 genotyping methods and assessment of genotype–phenotype relationships. Clin Chem 2003; 49: 542–551.

    Article  CAS  PubMed  Google Scholar 

  9. Johansson I, Lundqvist E, Dahl M-L, Ingelman-Sundberg M . PCR-based genotyping for duplicated and deleted CYP2D6 genes. Pharmacogenetics 1996; 6: 351–355.

    Article  CAS  PubMed  Google Scholar 

  10. Kubota T, Yamaura Y, Ohkawa N, Hara H, Chiba K . Frequencies of CYP2D6 mutant alleles in a normal Japanese population and metabolic activity of dextromethorphan O-demethylation in diferent CYP2D6 genotypes. Br J Clin Pharmacol 2000; 50: 31–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yokoi T, Kosaka Y, Chida M, Chiba K, Nakamura H, Ishizaki T et al. A new CYP2D6 allele with a nine base insertion in exon 9 in a Japanese population associated with poor metabolizer phenotype. Pharmacogenetics 1996; 6: 395–401.

    Article  CAS  PubMed  Google Scholar 

  12. Wang S-L, Lai M-D, Huang J-D . G169R mutation diminishes the metabolic activity of CYP2D6 in Chinese. Drug Metab Dipos 1999; 27: 385–388.

    CAS  Google Scholar 

  13. Chida M, Yokoi T, Nemoto N, Inaba M, Kinoshita M, Kamataki T . A new variant CYP2D6 allele (CYP2D6*21) with a single base insertion in exon 5 in a Japanese population associated with a poor metabolizer phenotype. Pharmacogenetics 1999; 9: 287–293.

    Article  CAS  PubMed  Google Scholar 

  14. Shimada T, Tsumura F, Yamasaki H, Guengerich FP, Inoue K . Characterization of (±)-bufuralol hydroxylation activities in liver microsomes of Japanese and Caucasian subjects genotyped for CYP2D. Pharmacogenetics 2001; 11: 143–156.

    Article  CAS  PubMed  Google Scholar 

  15. Ji L, Pan S, Wu J, Marti-Jaun J, Hersberger M . Genetic polymorphisms of CYP2D6 in Chinese mainland. Chin Med J 2002; 115: 1780–1784.

    CAS  PubMed  Google Scholar 

  16. Chida M, Ariyoshi N, Yokoi T, Nemoto N, Inaba M, Kinoshita M et al. New allelic arrangement CYP2D6*36 × 2 found in a Japanese poor metabolizer of debrisoquine. Pharmacogenetics 2002; 12: 559–562.

    Article  Google Scholar 

  17. Lennard MS, Iyun AO, Jackson PR, Tucker GT, Woods HF . Evidence for a dissociation in the control of sparteine, debrisoquine and metoprolol metabolism in Nigerians. Pharmacogenetics 1992; 2: 89–92.

    Article  CAS  PubMed  Google Scholar 

  18. Simooya OO, Njunju E, Hodjegan AR, Lennard MS, Tucker GT . Debrisoquine and metoprolol oxidation in Zambians: a population study. Pharmacogenetics 1993; 3: 205–208.

    Article  CAS  PubMed  Google Scholar 

  19. Masimirembwa C, Hasler J, Bertilsson L, Johansson I, Ekberg O, Ingelman-Sundberg M . Phenotype and genotype analysis of debrisoquine hydroxylase (CYP2D6) in a black Zimbabwean population. Reduced enzyme activity and evaluation of metabolic correlation of CYP2D6 probe drugs. Eur J Clin Pharmacol 1996b; 51: 117–122.

    Article  CAS  PubMed  Google Scholar 

  20. Droll K, Bruce-Mensah K, Otton SV, Gaedigk A, Sellers EM, Tyndale RF . Comparison of three CYP2D6 probe substrates and genotype in Ghanaians, Chinese, and Caucasians. Pharmacogenetics 1998; 8: 325–333.

    Article  CAS  PubMed  Google Scholar 

  21. Leathart JBS, London SJ, Steward A, Adams JD, Idle JR, Daly AK . CYP2D6 phenotype–genotype relationships in African-Americans and Caucasians in Los Angeles. Pharmacogenetics 1998; 8: 529–541.

    Article  CAS  PubMed  Google Scholar 

  22. Griese U-E, Asante-Poku S, Ofori-Adjei D, Mikus G, Eichelbaum M . Analysis of the CYP2D6 gene mutations and their consequences for enzyme function in a West African population. Pharmacogenetics 1999; 9: 715–723.

    CAS  PubMed  Google Scholar 

  23. Wan Y-JY, Poland RE, Han G, Konishi T, Zheng Y-P, Berman N et al. Analysis of the CYP2D6 gene polymorphism and enzyme activity in African-Americans in Southern California. Pharmacogenetics 2001; 11: 489–499.

    Article  CAS  PubMed  Google Scholar 

  24. Gaedigk A, Bradford LD, Marcucci KA, Leeder JS . Unique CYP2D6 activity distribution and genotype–phenotype discordance in African Americans. Clin Pharmacol Ther 2002; 72: 76–89.

    Article  CAS  PubMed  Google Scholar 

  25. Raimundo S, Fischer J, Eichelbaum M, Griese E-U, Schwab M, Zanger UM . Elucidation of the genetic basis of the common ‘intermediate metabolizer’ phenotype for drug oxidation by CYP2D6. Pharmacogenetics 2000; 10: 577–581.

    Article  CAS  PubMed  Google Scholar 

  26. Zanger UM, Fischer J, Raimundo S, Stüven T, Evert BO, Schwab M et al. Comprehensive analysis of the genetic factors determining expression and function of hepatic CYP2D6. Pharmacogenetics 2001; 11: 573–585.

    Article  CAS  PubMed  Google Scholar 

  27. Gaedigk A, Ryder DL, Bradford LD, Leeder JS . CYP2D6 poor metabolizer status can be ruled out by a single genotyping assay testing for the −1584G promoter polymorphism. Clin Chem 2003; 49: 1008–1011.

    Article  CAS  PubMed  Google Scholar 

  28. Kimura S, Umeno M, Skoda RC, Meyer UA, Gonzalez FJ . The human debrisoquine 4-hydroxylase (CYP2D) locus: sequence and identification of the polymorphic CYP2D6 gene, a related gene, and a pseudogene. Am J Hum Genet 1989; 45: 889–904.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Abdel-Rahman SM, Leeder JS, Wilson JT, Gaedigk A, Gotschall RR, Medve R et al. Concordance between tramadol and dextromethorphan parent/metabolite ratios: the influence of CYP2D6 and non-CYP2D6 pathways on biotransformation. J Clin Pharmacol 2002; 42: 24–29.

    Article  CAS  PubMed  Google Scholar 

  30. Rogan PK, Svojanovsky S, Leeder JS . Information theory-based analysis of CYP2C19, CYP2D6 and CYP3A5 splicing mutations. Pharmacogenetics 2003; 13: 207–218.

    Article  CAS  PubMed  Google Scholar 

  31. Aklillu E, Herrlin K, Gustafsson LL, Bertilsson L, Ingelman-Sundberg M . Evidence for environmental influence on CYP2D6-catalysed debrisoquine hydroxylation as demonstrated by phenotyping and genotyping of Ethiopians living in Ethiopia or in Sweden. Pharmacogenetics 2002; 12: 375–383.

    Article  CAS  PubMed  Google Scholar 

  32. Gaedigk A, Ndjountsche L, Gaedigk R, Bradford LD, Leeder JS . Discovery of a novel non-functional cytochrome P4502D6 allele, CYP2D6*42, in AfricanAmericans. Clin Pharmacol Ther 2003; 73: 575–576.

    Article  CAS  PubMed  Google Scholar 

  33. Grant DM . Pharmacogenetics and the regulation of gene transcription. Phamacogenetics 2004; 14: 391–393.

    Article  Google Scholar 

  34. Cairns W, Smith CAD, McLaren AW, Wolf CR . Characterization of the human cytochrome P4502D6 promoter. J Biol Chem 1996; 271: 25269–25276.

    Article  CAS  PubMed  Google Scholar 

  35. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001; 27: 383–391.

    Article  CAS  PubMed  Google Scholar 

  36. Rogan PK, Faux BM, Schneider TD . Information analysis of human splice site mutations. Hum Mutat 1998; 12: 153–171.

    Article  CAS  PubMed  Google Scholar 

  37. Vockley J, Rogan PK, Anderson BD, Willard J, Seelan RS, Smith DI et al. Exon skipping in IVD RNA processing in isovaleric acidemia caused by point mutations in the coding region of the IVD gene. Am J Hum Genet 2000; 66: 356–367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Howard LA, Miksys S, Hoffmann E, Mash D, Tyndale RF . Brain CYP2E1 is induced by nicotine and ethanol in rat and is higher in smokers and alcoholics. Br J Pharmacol 2003; 138: 1376–1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Raimundo S, Toscano C, Klein K, Fischer J, Griese E-U, Eichelbaum M et al. A novel intronic mutation, 2988G>A, with high predictivity for impaired function of cytochrome P450 2D6 in white subjects. Clin Pharmacol Ther (CPT) 2004; 76: 128–138.

    Article  CAS  Google Scholar 

  40. Abdel-Rahman SM, Gotschall RR, Kauffman RE, Leeder JS, Kearns GL . Investigation of terbinafine as a CYP2D6 inhibitor in vivo. Clin Pharmacol Ther 1999; 65: 465–472.

    Article  CAS  PubMed  Google Scholar 

  41. Marcucci KA, Pearce RE, Crespi C, Leeder JS, Gaedigk A . Characterization of cytochrome P450 2D6.1 (CYP2D6.1), CYP2D6.2 and CYP2D6.17 activities toward model CYP2D6 substrates dextromethorphan, bufuralol, and debrisoquine. Drug Metab Dispos 2002; 30: 1–7.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Roger Gaedigk, PhD and Peter K Rogan, PhD for continuous support and advice and Darren W Baker, BS for technical support. We further express our gratitude to Rachel F Tyndale, PhD for her generous gift of IMR-32 cells and to John T Wilson, MD and Gregory L Kearns, PharmD, PhD who served as the Principal Investigators for the pediatric studies of tramadol. This project was supported in part by intramural grants from the Katherine B Richardson Associates Endowment Fund (AG and SWA) and the National Institute of Child Health Human Development (Pediatric Pharmacology Research Unit Network) and RO1ES10855-04 from the National Institute of Environmental Health Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A Gaedigk.

Additional information

DUALITY OF INTEREST

None declared.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gaedigk, A., Bhathena, A., Ndjountché, L. et al. Identification and characterization of novel sequence variations in the cytochrome P4502D6 (CYP2D6) gene in African Americans. Pharmacogenomics J 5, 173–182 (2005). https://doi.org/10.1038/sj.tpj.6500305

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/sj.tpj.6500305

Keywords

This article is cited by

Search

Quick links