Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Genome-wide association study of antipsychotic-induced QTc interval prolongation

Abstract

QT prolongation is associated with increased risk of cardiac arrhythmias. Identifying the genetic variants that mediate antipsychotic-induced prolongation may help to minimize this risk, which might prevent the removal of efficacious drugs from the market. We performed candidate gene analysis and five drug-specific genome-wide association studies (GWASs) with 492K single-nucleotide polymorphisms to search for genetic variation mediating antipsychotic-induced QT prolongation in 738 schizophrenia patients from the Clinical Antipsychotic Trial of Intervention Effectiveness study. Our candidate gene study suggests the involvement of NOS1AP and NUBPL (P-values=1.45 × 10−05 and 2.66 × 10−13, respectively). Furthermore, our top GWAS hit achieving genome-wide significance, defined as a Q-value <0.10 (P-value=1.54 × 10−7, Q-value=0.07), located in SLC22A23, mediated the effects of quetiapine on prolongation. SLC22A23 belongs to a family of organic ion transporters that shuttle a variety of compounds, including drugs, environmental toxins and endogenous metabolites, across the cell membrane. This gene is expressed in the heart and is integral in mouse heart development. The genes mediating antipsychotic-induced QT prolongation partially overlap with the genes affecting normal QT interval variation. However, some genes may also be unique for drug-induced prolongation. This study demonstrates the potential of GWAS to discover genes and pathways that mediate antipsychotic-induced QT prolongation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1

Similar content being viewed by others

References

  1. Viskin S, Justo D, Halkin A, Zeltser D . Long QT syndrome caused by noncardiac drugs. Prog Cardiovasc Dis 2003; 45: 415–427.

    Article  CAS  Google Scholar 

  2. Zeltser D, Justo D, Halkin A, Prokhorov V, Heller K, Viskin S . Torsade de pointes due to noncardiac drugs: most patients have easily identifiable risk factors. Medicine (Baltimore) 2003; 82: 282–290.

    Google Scholar 

  3. Ray WA, Meredith S, Thapa PB, Meador KG, Hall K, Murray KT . Antipsychotics and the risk of sudden cardiac death. Arch Gen Psychiatry 2001; 58: 1161–1167.

    Article  CAS  Google Scholar 

  4. Kane JM, Marder SR . Psychopharmacologic treatment of schizophrenia. Schizophr Bull 1993; 19: 287–302.

    Article  CAS  Google Scholar 

  5. Kane JM, McGlashan TH . Treatment of schizophrenia. Lancet 1995; 346: 820–825.

    Article  CAS  Google Scholar 

  6. Glassman AH, Bigger Jr JT . Antipsychotic drugs: prolonged QTc interval, torsade de pointes, and sudden death. Am J Psychiatry 2001; 158: 1774–1782.

    Article  CAS  Google Scholar 

  7. Taylor DM . Antipsychotics and QT prolongation. Acta Psychiatr Scand 2003; 107: 85–95.

    Article  CAS  Google Scholar 

  8. Yerrabolu M, Prabhudesai S, Tawam M, Winter L, Kamalesh M . Effect of risperidone on QT interval and QT dispersion in the elderly. Heart Dis 2000; 2: 10–12.

    CAS  PubMed  Google Scholar 

  9. Paulussen AD, Gilissen RA, Armstrong M, Doevendans PA, Verhasselt P, Smeets HJ et al. Genetic variations of KCNQ1, KCNH2, SCN5A, KCNE1, and KCNE2 in drug-induced long QT syndrome patients. J Mol Med 2004; 82: 182–188.

    Article  CAS  Google Scholar 

  10. Arking DE, Pfeufer A, Post W, Kao WH, Newton-Cheh C, Ikeda M et al. A common genetic variant in the NOS1 regulator NOS1AP modulates cardiac repolarization. Nat Genet 2006; 38: 644–651.

    Article  CAS  Google Scholar 

  11. Aarnoudse AJ, Newton-Cheh C, de Bakker PI, Straus SM, Kors JA, Hofman A et al. Common NOS1AP variants are associated with a prolonged QTc interval in the Rotterdam Study. Circulation 2007; 116: 10–16.

    Article  Google Scholar 

  12. Post W, Shen H, Damcott C, Arking DE, Kao WH, Sack PA et al. Associations between genetic variants in the NOS1AP (CAPON) gene and cardiac repolarization in the old order Amish. Hum Hered 2007; 64: 214–219.

    Article  CAS  Google Scholar 

  13. Tobin MD, Kahonen M, Braund P, Nieminen T, Hajat C, Tomaszewski M et al. Gender and effects of a common genetic variant in the NOS1 regulator NOS1AP on cardiac repolarization in 3761 individuals from two independent populations. Int J Epidemiol 2008; 37: 1132–1141.

    Article  Google Scholar 

  14. Pfeufer A, Sanna S, Arking DE, Muller M, Gateva V, Fuchsberger C et al. Common variants at ten loci modulate the QT interval duration in the QTSCD Study. Nat Genet 2009; 41: 407–414.

    Article  CAS  Google Scholar 

  15. Newton-Cheh C, Eijgelsheim M, Rice KM, de Bakker PI, Yin X, Estrada K et al. Common variants at ten loci influence QT interval duration in the QTGEN Study. Nat Genet 2009; 41: 399–406.

    Article  CAS  Google Scholar 

  16. Volpi S, Heaton C, Mack K, Hamilton JB, Lannan R, Wolfgang CD et al. Whole genome association study identifies polymorphisms associated with QT prolongation during iloperidone treatment of schizophrenia. Mol Psychiatry 2009; 14: 1024–1031.

    Article  CAS  Google Scholar 

  17. Lieberman JA, Stroup TS, McEvoy JP, Swartz MS, Rosenheck RA, Perkins DO et al. Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. N Engl J Med 2005; 353: 1209–1223.

    Article  CAS  Google Scholar 

  18. Stroup TS, McEvoy JP, Swartz MS, Byerly MJ, Glick ID, Canive JM et al. The National Institute of Mental Health Clinical Antipsychotic Trials of Intervention Effectiveness (CATIE) project: schizophrenia trial design and protocol development. Schizophr Bull 2003; 29: 15–31.

    Article  Google Scholar 

  19. First MB, Spitzer R, Gibbon M, Williams J . Structured Clinical Interview for DSM IV Axis I Disorders—Administration Booklet. American Psychiatric Press, Inc.: Washington D.C.:, 1994.

    Google Scholar 

  20. Bazett H . An analysis of the time-relations of electrocardiograms. Heart 1920; 7: 353–370.

    Google Scholar 

  21. Sullivan PF, Lin D, Tzeng JY, van den Oord E, Perkins D, Stroup TS et al. Genomewide association for schizophrenia in the CATIE study: results of stage 1. Mol Psychiatry 2008; 13: 570–584.

    Article  CAS  Google Scholar 

  22. van den Oord EJ, Adkins DE, McClay J, Lieberman J, Sullivan PF . A systematic method for estimating individual responses to treatment with antipsychotics in CATIE. Schizophr Res 2009; 107: 13–21.

    Article  Google Scholar 

  23. Aberg K, Adkins DE, Bukszar J, Webb BT, Caroff SN, Miller del D et al. Genomewide association study of movement-related adverse antipsychotic effects. Biol Psychiatry 2010; 67: 279–282.

    Article  Google Scholar 

  24. McClay JL, Adkins DE, Aberg K, Stroup S, Perkins DO, Vladimirov VI et al. Genome-wide pharmacogenomic analysis of response to treatment with antipsychotics. Mol Psychiatry 2009; e-pub ahead of print 1 September 2009; doi:10.1038/mp.2009.89.

  25. Goldstein H . Multilevel statistical models. Arnold: London, 1995.

    Google Scholar 

  26. Searle SR, Casella G, McCulloch CE . Variance components. Wiley: New York, 1992.

    Book  Google Scholar 

  27. Pinheiro JC, Bates DM . Mixed-Effects Models in S and S-Plus. Springer: New York, NY, 2000.

    Book  Google Scholar 

  28. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, Bender D et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 2007; 81: 559–575.

    Article  CAS  Google Scholar 

  29. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D . Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 2006; 38: 904–909.

    Article  CAS  Google Scholar 

  30. Storey JD . The positive false discovery rate: A Bayesian interpretation and the q-value. Annals of Statistics 2003; 31: 2013–2035.

    Article  Google Scholar 

  31. Storey JD, Tibshirani R . Statistical significance for genomewide studies. Proc Natl Acad Sci USA 2003; 100: 9440–9445.

    Article  CAS  Google Scholar 

  32. van den Oord EJ, Sullivan PF . False discoveries and models for gene discovery. Trends Genet 2003; 19: 537–542.

    Article  CAS  Google Scholar 

  33. Bukszar J, McClay J, van den Oord E . Estimating the posterior probability that genomewide association findings are true or false. Bioinformatics 2009, Jul 14.

  34. Glonek G, Soloman P . Discussion of resampling-based multiple testing for microarray data analysis by ge, dudoit and speed. Test 2003; 12: 1–77.

    Article  Google Scholar 

  35. Evans WE, Johnson JA . Pharmacogenomics: the inherited basis for interindividual differences in drug response. Annu Rev Genomics Hum Genet 2001; 2: 9–39.

    Article  CAS  Google Scholar 

  36. Devlin B, Roeder K . Genomic control for association studies. Biometrics 1999; 55: 997–1004.

    Article  CAS  Google Scholar 

  37. Koepsell H, Endou H . The SLC22 drug transporter family. Pflugers Arch 2004; 447: 666–676.

    Article  CAS  Google Scholar 

  38. Jacobsson JA, Haitina T, Lindblom J, Fredriksson R . Identification of six putative human transporters with structural similarity to the drug transporter SLC22 family. Genomics 2007; 90: 595–609.

    Article  CAS  Google Scholar 

  39. Christoforou N, Miller RA, Hill CM, Jie CC, McCallion AS, Gearhart JD . Mouse ES cell-derived cardiac precursor cells are multipotent and facilitate identification of novel cardiac genes. J Clin Invest 2008; 118: 894–903.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Chang KC, Barth AS, Sasano T, Kizana E, Kashiwakura Y, Zhang Y et al. CAPON modulates cardiac repolarization via neuronal nitric oxide synthase signaling in the heart. Proc Natl Acad Sci USA 2008; 105: 4477–4482.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Mental Health (grant number N01 MH90001). Eli Lilly funded the GWAS genotyping done at Perlegen Sciences.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K Åberg.

Ethics declarations

Competing interests

Dr PF Sullivan reports receiving research funding from Eli Lilly in connection with this project. Dr TS Stroup reports receiving consulting funds from Janssen and Lilly. Dr D Perkins reports having received research funding from AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb, Otsuka Pharmaceutical, Eli Lilly, Janssen Pharmaceutica Products and Pfizer; and consulting and educational fees from AstraZeneca Pharmaceuticals LP, Bristol-Myers Squibb, Eli Lilly, Janssen Pharmaceuticals, GlaxoSmithKline, Forest Labs, Pfizer Inc and Shire. Dr JA Lieberman reports having received research funding from AstraZeneca Pharmaceuticals, Bristol-Myers Squibb, GlaxoSmithKline, Janssen Pharmaceutica, Wyeth, Merck, Forest Labs, Allon and Pfizer, has participated in research, consulting, advisory board or DSMB activities from Chephalon, Eli Lilly, Pfizer, Bioline, Lilly, AstraZeneca, Forest Labs, GlaxoSmithKline, Janssen Pharmaceutica, Otsuka, Wyeth and Solvay, and a patent with Repligen. Drs K Aberg, JL McClay, Y Liu, DE Adkins, J Bukszár, P Jia, Z Zhao and EJCG van den Oord report no financial relationships with commercial interests and have nothing to disclose.

Additional information

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website

Supplementary information

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Cite this article

Åberg, K., Adkins, D., Liu, Y. et al. Genome-wide association study of antipsychotic-induced QTc interval prolongation. Pharmacogenomics J 12, 165–172 (2012). https://doi.org/10.1038/tpj.2010.76

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2010.76

Keywords

This article is cited by

Search

Quick links