Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

The CYP3A4*22 C>T single nucleotide polymorphism is associated with reduced midazolam and tacrolimus clearance in stable renal allograft recipients

Abstract

Tacrolimus, a dual substrate of CYP3A4 and CYP3A5 has a narrow therapeutic index and is characterized by high between-subject variability in oral bioavailability. This study investigated the effects of the recently described CYP3A4*22 intron 6 C>T single nucleotide polymorphism on in vivo CYP3A4 activity as measured by midazolam (MDZ) clearance and tacrolimus pharmacokinetics in two cohorts of renal allograft recipients, taking into account the CYP3A5*1/*3 genotype and other determinants of drug disposition. In CYP3A5 non-expressers, the presence of one CYP3A4*22T-allele was associated with a 31.7–33.6% reduction in MDZ apparent oral clearance, reflecting reduced in vivo CYP3A4 activity. In addition, at 12 months after transplantation, steady-state clearance of tacrolimus was 36.8% decreased compared with homozygous CYP3A4*22CC-wild type patients, leading to 50% lower dose requirements. Both concurrent observations in stable renal allograft recipients are consistent with a reduced in vivo CYP3A4 activity for the CYP3A4*22T-allele.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2

Similar content being viewed by others

References

  1. de Jonge H, Naesens M, Kuypers DR . New insights into the pharmacokinetics and pharmacodynamics of the calcineurin inhibitors and mycophenolic acid: possible consequences for therapeutic drug monitoring in solid organ transplantation. Ther Drug Monit 2009; 31: 416–435.

    Article  CAS  PubMed  Google Scholar 

  2. Staatz CE, Tett SE . Clinical pharmacokinetics and pharmacodynamics of tacrolimus in solid organ transplantation. Clin Pharmacokinet 2004; 43: 623–653.

    Article  CAS  PubMed  Google Scholar 

  3. Dai Y, Hebert MF, Isoherranen N, Davis CL, Marsh C, Shen DD et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos 2006; 34: 836–847.

    Article  CAS  PubMed  Google Scholar 

  4. Kamdem LK, Streit F, Zanger UM, Brockmoller J, Oellerich M, Armstrong VW et al. Contribution of CYP3A5 to the in vitro hepatic clearance of tacrolimus. Clin Chem 2005; 51: 1374–1381.

    Article  CAS  PubMed  Google Scholar 

  5. Saeki T, Ueda K, Tanigawara Y, Hori R, Komano T . Human P-glycoprotein transports cyclosporin A and FK506. J Biol Chem 1993; 268: 6077–6080.

    CAS  PubMed  Google Scholar 

  6. Lamba JK, Lin YS, Schuetz EG, Thummel KE . Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev 2002; 54: 1271–1294.

    Article  CAS  PubMed  Google Scholar 

  7. Lin YS, Dowling AL, Quigley SD, Farin FM, Zhang J, Lamba J et al. Co-regulation of CYP3A4 and CYP3A5 and contribution to hepatic and intestinal midazolam metabolism. Mol Pharmacol 2002; 62: 162–172.

    Article  CAS  PubMed  Google Scholar 

  8. de Jonge H, Kuypers DR . Pharmacogenetics in solid organ transplantation: current status and future directions. Transplant Rev (Orlando) 2008; 22: 6–20.

    Article  Google Scholar 

  9. Hesselink DA, Bouamar R, Elens L, van Schaik RH, van GT . The role of pharmacogenetics in the disposition of and response to tacrolimus in solid organ transplantation. Clin Pharmacokinet 2013; 53: 123–139.

    Article  Google Scholar 

  10. Hesselink DA, van Schaik RH, van der Heiden IP, van der Werf M, Gregoor PJ, Lindemans J et al. Genetic polymorphisms of the CYP3A4, CYP3A5, and MDR-1 genes and pharmacokinetics of the calcineurin inhibitors cyclosporine and tacrolimus. Clin Pharmacol Ther 2003; 74: 245–254.

    Article  CAS  PubMed  Google Scholar 

  11. MacPhee IA, Fredericks S, Tai T, Syrris P, Carter ND, Johnston A et al. Tacrolimus pharmacogenetics: polymorphisms associated with expression of cytochrome p4503A5 and P-glycoprotein correlate with dose requirement. Transplantation 2002; 74: 1486–1489.

    Article  CAS  PubMed  Google Scholar 

  12. Jacobson PA, Oetting WS, Brearley AM, Leduc R, Guan W, Schladt D et al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplantation 2011; 91: 300–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Elens L, van Schaik RH, Panin N, De MM, Wallemacq P, Lison D et al. Effect of a new functional CYP3A4 polymorphism on calcineurin inhibitors' dose requirements and trough blood levels in stable renal transplant patients. Pharmacogenomics 2011; 12: 1383–1396.

    Article  CAS  PubMed  Google Scholar 

  14. Elens L, Bouamar R, Hesselink DA, Haufroid V, van der Heiden IP, van GT et al. A new functional CYP3A4 intron 6 polymorphism significantly affects tacrolimus pharmacokinetics in kidney transplant recipients. Clin Chem 2011; 57: 1574–1583.

    Article  CAS  PubMed  Google Scholar 

  15. Tavira B, Coto E, Diaz-Corte C, Alvarez V, Lopez-Larrea C, Ortega F . A search for new CYP3A4 variants as determinants of tacrolimus dose requirements in renal-transplanted patients. Pharmacogenet Genomics 2013; 23: 445–448.

    Article  CAS  PubMed  Google Scholar 

  16. Lunde I, Bremer S, Midtvedt K, Mohebi B, Dahl M, Bergan S et al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol 2014; 70: 685–693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Moes DJ, Swen JJ, den HJ, van der Straaten T, van der Heide JJ, Sanders JS et al. Effect of CYP3A4*22, CYP3A5*3, and CYP3A combined genotypes on cyclosporine, everolimus, and tacrolimus pharmacokinetics in renal transplantation. CPT Pharmacometrics Syst Pharmacol 2014; 3: e100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Santoro AB, Struchiner CJ, Felipe CR, Tedesco-Silva H, Medina-Pestana JO, Suarez-Kurtz G . CYP3A5 genotype, but not CYP3A4*1b, CYP3A4*22, or hematocrit, predicts tacrolimus dose requirements in Brazilian renal transplant patients. Clin Pharmacol Ther 2013; 94: 201–202.

    Article  CAS  PubMed  Google Scholar 

  19. Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W . Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J 2011; 11: 274–286.

    Article  PubMed  Google Scholar 

  20. Okubo M, Murayama N, Shimizu M, Shimada T, Guengerich FP, Yamazaki H . CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with reduced CYP3A4 protein level and function in human liver microsomes. J Toxicol Sci 2013; 38: 349–354.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Elens L, Nieuweboer A, Clarke SJ, Charles KA, de Graan AJ, Haufroid V et al. CYP3A4 intron 6 C>T SNP (CYP3A4*22) encodes lower CYP3A4 activity in cancer patients, as measured with probes midazolam and erythromycin. Pharmacogenomics 2013; 14: 37–49.

    Google Scholar 

  22. de Jonge H, de Loor H, Verbeke K, Vanrenterghem Y, Kuypers DR . Impact of CYP3A5 genotype on tacrolimus versus midazolam clearance in renal transplant recipients: new insights in CYP3A5-mediated drug metabolism. Pharmacogenomics 2013; 14: 1467–1480.

    Article  CAS  PubMed  Google Scholar 

  23. de Jonge H, de Loor H, Verbeke K, Vanrenterghem Y, Kuypers DR . In vivo CYP3A4 activity, CYP3A5 genotype, and hematocrit predict tacrolimus dose requirements and clearance in renal transplant patients. Clin Pharmacol Ther 2012; 92: 366–375.

    Article  CAS  PubMed  Google Scholar 

  24. de Jonge H, e Loor H, Verbeke K, Vanrenterghem Y, Kuypers DR . In vivo CYP3A activity is significantly lower in cyclosporine-treated as compared with tacrolimus-treated renal allograft recipients. Clin Pharmacol Ther 2011; 90: 414–422.

    Article  CAS  PubMed  Google Scholar 

  25. Miller SA, Dykes DD, Polesky HF . A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res 1988; 16: 1215.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. de Loor H, de Jonge H, Verbeke K, Vanrenterghem Y, Kuypers DR . A highly sensitive liquid chromatography tandem mass spectrometry method for simultaneous quantification of midazolam, 1'-hydroxymidazolam and 4-hydroxymidazolam in human plasma. Biomed Chromatogr 2011; 25: 1091–1098.

    Article  CAS  PubMed  Google Scholar 

  27. Napoli KL, Hammett-Stabler C, Taylor PJ, Lowe W, Franklin ME, Morris MR et al. Multi-center evaluation of a commercial Kit for tacrolimus determination by LC/MS/MS. Clin Biochem 2010; 43: 910–920.

    Article  CAS  PubMed  Google Scholar 

  28. Gaunt TR, Rodriguez S, Day IN . Cubic exact solutions for the estimation of pairwise haplotype frequencies: implications for linkage disequilibrium analyses and a web tool 'CubeX'. BMC Bioinformatics 2007; 8: 428.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Elens L, Capron A, van Schaik RH, De MM, De PL, Eddour DC et al. Impact of CYP3A4*22 allele on tacrolimus pharmacokinetics in early period after renal transplantation: toward updated genotype-based dosage guidelines. Ther Drug Monit 2013; 35: 608–616.

    CAS  PubMed  Google Scholar 

  30. Asberg A, Midtvedt K, van GM, Storset E, Bremer S, Bergan S et al. Inclusion of CYP3A5 genotyping in a nonparametric population model improves dosing of tacrolimus early after transplantation. Transpl Int 2013; 26: 1198–1207.

    Article  PubMed  Google Scholar 

  31. Anglicheau D, Flamant M, Schlageter MH, Martinez F, Cassinat B, Beaune P et al. Pharmacokinetic interaction between corticosteroids and tacrolimus after renal transplantation. Nephrol Dial Transplant 2003; 18: 2409–2414.

    Article  CAS  PubMed  Google Scholar 

  32. Shimada T, Terada A, Yokogawa K, Kaneko H, Nomura M, Kaji K et al. Lowered blood concentration of tacrolimus and its recovery with changes in expression of CYP3A and P-glycoprotein after high-dose steroid therapy. Transplantation 2002; 74: 1419–1424.

    Article  CAS  PubMed  Google Scholar 

  33. van Duijnhoven EM, Boots JM, Christiaans MH, Stolk LM, Undre NA, van Hooff JP . Increase in tacrolimus trough levels after steroid withdrawal. Transpl Int 2003; 16: 721–725.

    Article  CAS  PubMed  Google Scholar 

  34. Kuypers DR, de Jonge H, Naesens M, Lerut E, Verbeke K, Vanrenterghem Y . CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin Pharmacol Ther 2007; 82: 711–725.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank our study nurses C Beerten, J De Vis, M Dubois, I Laenen, A Swinnen, H Wielandt and A Willems for their great efforts in this study and A Herelixcka for managing the clinical database. We also thank M Dekens, G Lemmens, K Vandormael, E Vanhalewyck and K Verstraete of the laboratory of Nephrology for their excellent technical assistance. The continued support of all colleagues of the Leuven Collaborative Group for Renal Transplantation is much appreciated. Last but not least, a special thanks to all renal transplant recipients who participated in this study. H de Jonge and D Kuypers received a grant from the Fund for Scientific Research Flanders (FWO Vlaanderen).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D R J Kuypers.

Ethics declarations

Competing interests

The authors declare no conflict of interest.

PowerPoint slides

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jonge, H., Elens, L., de Loor, H. et al. The CYP3A4*22 C>T single nucleotide polymorphism is associated with reduced midazolam and tacrolimus clearance in stable renal allograft recipients. Pharmacogenomics J 15, 144–152 (2015). https://doi.org/10.1038/tpj.2014.49

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/tpj.2014.49

This article is cited by

Search

Quick links