Skip to main content
Log in

Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Low power laser irradiation is regarded to have a significant role in triggering cellular proliferation and in treating diseases of diverse etiologies. The present work contributes to the understanding of the mechanisms of action by studying low power laser effects in human fibroblasts. Confocal laser scanning microscopy is used for irradiation and observation of the same area of interest allowing the imaging of laser effects at the single cell level and in real time. Coverslip cultures were placed in a small incubation chamber forin vivo microscopic observation. Laser stimulation of the cells was performed using the 647 nm line of the confocal laser through the objective lens of the microscope. Mitochondrial membrane potential (??m), intracellular pH, calcium alterations and generation of reactive oxygen species (ROS) were monitored using specific fluorescent vital probes. The induced effects were quantified using digital image processing techniques. After laser irradiation, a gradual alkalinization of the cytosolic pH and an increase in mitochondrial membrane potential were observed. Recurrent spikes of intracellular calcium concentration were also triggered by laser. Reactive oxygen species were generated as a result of biostimulation. No such effects were monitored in microscopic fields other than the irradiated ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. Karu Primary and secondary mechanisms of action of visible to near-IR radiation on cells, J. Photochem. Photobiol., B, 1999, 49, 1–17.

    Article  CAS  Google Scholar 

  2. M. Boulton and J. Marshall He-Ne laser stimulation of human fibroblast proliferation and attachment in vitro, Lasers Life Sci., 1986, 1, 125–134.

    Google Scholar 

  3. R. Lubart, Y. Wollman, H. Friedmann, S. Rochkind and Y. Lanlicht Effects of visible and near infrared lasers on cell culture, J. Photochem. Photobiol., B, 1992, 12, 305–310.

    Article  CAS  Google Scholar 

  4. N. Grossman, N. Schneid, H. Reuveni, S. Halevy and R. Lubart 780 nm low power diode laser irradiation stimulates proliferation of keratinocyte cultures: involvement of reactive oxygen species, Lasers Surg. Med., 1998, 22, 212–218.

    Article  CAS  PubMed  Google Scholar 

  5. M. Schaffer, R. Sroka, C. Fuchs, U. Schrader-Reichardt, P. M. Schaffer, M. Busch and E. Duhmke Biomodulative effects induced by 805 nm laser light irradiation of normal and tumour cells, J. Photochem. Photobiol., B, 1997, 40, 253–257.

    Article  CAS  Google Scholar 

  6. J. M. Ocaña-Quero, J. Perez de la Lastra, R. Gomez-Villamandos and M. Moreno-Millan Biological effects of Helium-Neon (He-Ne) laser irradiation on mouse myeloma (Sp2-Ag14) cell line in vitro, Lasers Med. Sci., 1998, 13, 214–218.

    Article  Google Scholar 

  7. R. Hilf, R. S. Murant, U. Narayanan and S. L. Gibson Relationship of Mitochondrial Function and Cellular Adenosine Triphosphate Levels to Hematoporphyrin Derivative-induced Phosensitization in R3230AC Mammary Tumors, Cancer Res., 1986, 46, 211–217.

    CAS  PubMed  Google Scholar 

  8. H. van Breuged and P. R. Dop Bar Power density and exposure time of He-Ne laser irradiation are more important than total energy dose in photo-biomodulation of human fibroblasts in vitro, Lasers Surg. Med., 1992, 12, 528–537.

    Article  Google Scholar 

  9. W. Yu, J. O. Naim and R. J. Lanzafame The effect of laser irradiation on the release of bFGF from 3T3 fibroblasts, Photochem. Photobiol., 1994, 2, 167–170.

    Article  Google Scholar 

  10. K. E. Herbert, L. L. Bhusate, D. L. Scott, C. Diamantopoulos and D. Perrett Effect of laser light at 820 nm on adenosine nucleotide levels in human lymphocytes, Lasers Life Sci., 1989, 2, 37–46.

    Google Scholar 

  11. V. Manteifel, L. Bakeeva and T. Karu Ultrastructure changes in chondriome of human lymphocytes after irradiation of He-Ne laser: appearance of giant mitochondria, J. Photochem. Photobiol., B, 1997, 38, 25–30.

    Article  CAS  Google Scholar 

  12. T. Karu, L. Pyatibrat and G. Kalendo Irradiation with He-Ne laser increases ATP level in cells cultivated in vitro, J. Photochem. Photobiol., B, 1995, 27, 219–223.

    Article  CAS  Google Scholar 

  13. R. Lubart, H. Friemann, T. Levinshal, R. Lavie and H. Breitbart Effect of light on calcium transport in bull sperm cells, J. Photochem. Photobiol., B, 1992, 15, 337–341.

    Article  CAS  Google Scholar 

  14. N. Cohen, R. Lubart, S. Rubinstein and H. Breitbart Light irradiation of mouse spermatozoa: stimulation of in vitro fertilization and calcium signals, Photochem. Photobiol., 1998, 68, 407–413.

    Article  CAS  PubMed  Google Scholar 

  15. M. Tong, Y. F. Liu, X. N. Zhao, C. Z. Yan, Z. R. Hu and Z. X. Zhang Effects of different wavelengths of low level laser irradiation on murine immunological activity and intracellular Ca2+ in human lymphocytes and cultured cortical neurogliocytes, Lasers Med. Sci., 2000, 15, 201–206.

    Article  Google Scholar 

  16. S. A. Gordon and K. Surrey Red and Far-Red Action on Oxidative Phosphorylation, Radiat. Res., 1960, 12, 325–339.

    Article  CAS  PubMed  Google Scholar 

  17. M. Kato, K. Shinzawa and S. Yoshikawa Cytochrome oxidase is a possible photoreceptor in mitochondria, Photobiochem. Photobiophys., 1981, 2, 263–269.

    CAS  Google Scholar 

  18. S. Passarella, E. Casamassima, S. Molinari, D. Pastore, E. Quagliariello, I. M. Catalano and A. Cingolani Increase of proton electrochemical potential and ATP synthesis in rat liver mitochondria irradiated in vitro by helium-neon laser, FEBS Lett., 1984, 175, 95–99.

    Article  CAS  PubMed  Google Scholar 

  19. S. Passarella, E. Perlino and E. Quagliriello Evidence of changes, induced by HeNe laser irradiation, in the optical and biochemical properties of rat liver mitochondria, Bioelectrochem. Bioenerg., 1983, 10, 185–198.

    Article  CAS  Google Scholar 

  20. H. Breitbart, T. Levinshal, N. Cohen, H. Friedmann and R. Lubart Changes in calcium transport in mammalian sperm mitochondria and plasma membrane irradiated at 633 nm (HeNe laser), J. Photochem. Photobiol., B, 1996, 34, 117–121.

    Article  CAS  Google Scholar 

  21. R. Lubart, H. Friedmann, M. Sinyakov, N. Cohen and H. Breitbart Changes in calcium transport in mammalian sperm mitochondria and plasma membrane caused by 780 nm irradiation, Lasers Surg. Med., 1997, 21, 493–499.

    Article  CAS  PubMed  Google Scholar 

  22. A. Arvanitaki and N. Chalazonitis Reactiones bioelectriques a la photoactivation des cytochromes, Arch. Sci. Physiol., 1947, 1, 385–405.

    Google Scholar 

  23. G. A. Callaghan, C. Riordan, W. S. Gilmore, I. A. Mcintyre, J. A. Alien and B. H. Hannigan Reactive oxygen species inducible by low intensity laser radiation after DNA synthesis in the haemopoietic cell line U937, Lasers Surg. Med., 1996, 19, 201–206.

    Article  CAS  PubMed  Google Scholar 

  24. J. A. Thomas, R. N. Buchsbaum, A. Zinniak and E. Racker Intracellular pH measurements in Ehrlich ascites tumor cells utilizing spectroscopic probes generated in situ, Biochemistry, 1979, 18, 2210–2218.

    Article  CAS  PubMed  Google Scholar 

  25. G. L’Allemain, S. Paris and J. Pouyssègur Growth factor action and intracellular pH regulation in fibroblasts. Evidence for a major role of the Na+/H+ antiport, J. Biol. Chem., 1984, 259, 5809–5815.

    Article  PubMed  Google Scholar 

  26. P. Vigne, C. Frelin, E. J. Cragoe and M. Lazdunski Ethylisopropyl-amiloride: a new and highly potent derivative of amiloride for the inhibition of the Na+/H+ exchange system in various cell types, Biochem. Biophys. Res. Commun., 1983, 116, 86–90.

    Article  CAS  PubMed  Google Scholar 

  27. K. Ramaswamy, J. M. Harig, J. G. Kleinman, M. S. Harris and J. A. Barry Sodium-proton exchange in human ileal brush-border membrane vesicles, Biochim. Biophys. Acta, 1989, 981, 193–199.

    Article  CAS  PubMed  Google Scholar 

  28. L. B. Chen and S. T., Probing Mitochondrial Membrane Potential in Living Cells by a J-Aggregate-Forming Dye, in Fluorescent and Luminescent Probes for Biological Activity, ed.W. T. Mason, Academic Press, London, 1993, pp. 124–132

    Google Scholar 

  29. T. L. Vanden Hoek, L. B. Becker, Z. Shao, C. Li and P. T. Schumacker Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes, J. Biol. Chem., 1998, 273, 18092–18098.

    Article  Google Scholar 

  30. G. U. Bae, D. W. Seo, H. K. Kwon, H. Y. Lee, S. Hong, Z. W. Lee, K. S. Ha, H. W. Lee and J. W. Han Hydrogen Peroxide activates p70S6k signaling pathway, J. Biol. Chem., 1999, 274, 32596–32602.

    Article  CAS  PubMed  Google Scholar 

  31. T. L. Vanden Hoek, L. B. Becker, Z. Shao, C. Li and, P. T. Schumacker Reactive oxygen species released from mitochondria during brief hypoxia induce preconditioning in cardiomyocytes, J. Biol. Chem., 1998, 273, 18092–18098.

    Article  Google Scholar 

  32. D. Pastore, M. Greco and S. Passarella Specific helium neon laser sensitivity of the purified cytochromes c oxidase, Int. J. Radiat. Biol., 2000, 76, 863–870.

    Article  CAS  PubMed  Google Scholar 

  33. H. Friedmann, R. Lubart and I. Laulicht A possible explanation of laser-induced stimulation, J. Photochem. Photobiol., B, 1991, 11, 87–95.

    Article  CAS  Google Scholar 

  34. J. L. Trimm, G. Salama and J. J. Abramson Sulfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesicles, J. Biol. Chem., 1986, 261, 16092–16098.

    Article  CAS  PubMed  Google Scholar 

  35. L. C. Penning, M. H. Rasch, E. Ben-Hur, T. M. A. R. Dubbelman, A. C. Havelaar, J. Van der Zee and J. van Steveninck A role for the transient increase of cytoplasmic free calcium in cell rescue after photodynamic treatment, Biochim. Biophys. Acta, 1992, 1107, 255–260.

    Article  CAS  PubMed  Google Scholar 

  36. A. Hubmer, A. Hermann, K. Uberriegler and B. Krammer Role of calcium in photodynamically induced cell damage of human fibroblasts, Photochem. Photobiol., 1996, 64, 211–215.

    Article  CAS  PubMed  Google Scholar 

  37. D. Perez-Sala, D. Collado-Escobar and F. Mollinedo Intracellular alkalinization suppresses lovastatin-induced apoptosis in HL-60 cells through the inactivation of a pH-dependent endonuclease, J. Biol. Chem., 1995, 270, 6235–6242.

    Article  CAS  PubMed  Google Scholar 

  38. J. Pouyssegur, A. Franchi, G. L’Allemain and S. Paris Cytoplasmic pH, a key determinant of growth factor-induced DNA synthesis in quiescent fibroblasts, FEBS Lett., 1985, 190, 115–119.

    Article  CAS  PubMed  Google Scholar 

  39. J. Huser and L. A. Blatter Fluctuations in mitochondrial membrane potential caused by repetitive gating of the permeability transition pore, Biochem. J., 1999, 343, 311–317.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. F. Ichas and J.-P. Mazat From calcium signalling to cell death: two conformations for the mitochondrial permeability transition pore. Switching from low- to high-conductance state, Biochim. Biophys. Acta, 1998, 1366, 33–50.

    Article  CAS  PubMed  Google Scholar 

  41. F. Ichas, L. S. Jouaville, S. S. Sidash, J.-P. Mazat and E. L. Holmuhamedov Mitochondrial calcium spiking: a transduction mechanism based on calcium-induced permeability transition involved in cell calcium signalling, FEBS Lett., 1994, 348, 211–215.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eleni Alexandratou.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alexandratou, E., Yova, D., Handris, P. et al. Human fibroblast alterations induced by low power laser irradiation at the single cell level using confocal microscopy. Photochem Photobiol Sci 1, 547–552 (2002). https://doi.org/10.1039/b110213n

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b110213n

Navigation