Skip to main content

Advertisement

Log in

Photodynamic therapy: a new antimicrobial approach to infectious disease?

  • Full Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Photodynamic therapy (PDT) employs a non-toxic dye, termed a photosensitizer (PS), and low intensity visible light which, in the presence of oxygen, combine to produce cytotoxic species. PDT has the advantage of dual selectivity, in that the PS can be targeted to its destination cell or tissue and, in addition, the illumination can be spatially directed to the lesion. PDT has previously been used to kill pathogenic microorganisms in vitro, but its use to treat infections in animal models or patients has not, as yet, been much developed. It is known that Gram-(-) bacteria are resistant to PDT with many commonly used PS that will readily lead to phototoxicity in Gram-(+) species, and that PS bearing a cationic charge or the use of agents that increase the permeability of the outer membrane will increase the efficacy of killing Gram-(-) organisms. All the available evidence suggests that multi-antibiotic resistant strains are as easily killed by PDT as naïve strains, and that bacteria will not readily develop resistance to PDT. Treatment of localized infections with PDT requires selectivity of the PS for microbes over host cells, delivery of the PS into the infected area and the ability to effectively illuminate the lesion. Recently, there have been reports of PDT used to treat infections in selected animal models and some clinical trials: mainly for viral lesions, but also for acne, gastric infection by Helicobacter pylori and brain abcesses. Possible future clinical applications include infections in wounds and burns, rapidly spreading and intractable soft-tissue infections and abscesses, infections in body cavities such as the mouth, ear, nasal sinus, bladder and stomach, and surface infections of the cornea and skin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 1998, 90, 889–905.

    Article  CAS  PubMed  Google Scholar 

  2. M. R. Hamblin and E. L. Newman, On the mechanism of the tumour-localising effect in photodynamic therapy, J. Photochem. Photobiol., B, 1994, 23, 3–8.

    Article  CAS  Google Scholar 

  3. M. Ochsner, Photophysical and photobiological processes in the photodynamic therapy of tumours, J. Photochem. Photobiol., B, 1997, 39, 1–18.

    Article  CAS  Google Scholar 

  4. M. Athar, H. Mukhtar and D. R. Bickers, Differential role of reactive oxygen intermediates in photofrin-I- and photofrin-II-mediated photoenhancement of lipid peroxidation in epidermal microsomal membranes, J. Invest. Dermatol., 1988, 90, 652–657.

    Article  CAS  PubMed  Google Scholar 

  5. R. W. Redmond and J. N. Gamlin, A compilation of singlet oxygen yields from biologically relevant molecules, Photochem. Photobiol., 1999, 70, 391–475.

    Article  CAS  PubMed  Google Scholar 

  6. N. M. Bressler and S. B. Bressler, Photodynamic therapy with verteporfin (Visudyne): impact on ophthalmology and visual sciences, Invest. Ophthalmol. Vis. Sci., 2000, 41, 624–628.

    CAS  PubMed  Google Scholar 

  7. W. H. Boehncke, T. Elshorst-Schmidt and R. Kaufmann, Systemic photodynamic therapy is a safe and effective treatment for psoriasis, Arch. Dermatol., 2000, 136, 271–272.

    Article  CAS  PubMed  Google Scholar 

  8. K. B. Trauner and T. Hasan, Photodynamic treatment of rheumatoid and inflammatory arthritis, Photochem. Photobiol., 1996, 64, 740–750.

    Article  CAS  PubMed  Google Scholar 

  9. H. Barr, Barrett’s esophagus: treatment with 5-aminolevulinic acid photodynamic therapy, Gastrointest. Endosc. Clin. North Am., 2000, 10, 421–437.

    Article  CAS  Google Scholar 

  10. S. G. Rockson, D. P. Lorenz, W. F. Cheong and K. W. Woodburn, Photoangioplasty: an emerging clinical cardiovascular role for photodynamic therapy, Circulation, 2000, 102, 591–596.

    Article  CAS  PubMed  Google Scholar 

  11. M. P. Jenkins, G. A. Buonaccorsi, M. Raphael, I. Nyamekye, J. R. McEwan, S. G. Bown and C. C. Bishop, Clinical study of adjuvant photodynamic therapy to reduce restenosis following femoral angioplasty, Br. J. Surg., 1999, 86, 1258–1263.

    Article  CAS  PubMed  Google Scholar 

  12. M. Schafer, C. Schmitz, R. Facius, G. Horneck, B. Milow, K. H. Funken and J. Ortner, Systematic study of parameters influencing the action of Rose Bengal with visible light on bacterial cells: comparison between the biological effect and singlet-oxygen production, Photochem. Photobiol., 2000, 71, 514–523.

    Article  CAS  PubMed  Google Scholar 

  13. M. Bhatti, A. MacRobert, S. Meghji, B. Henderson and M. Wilson, A study of the uptake of toluidine blue O by Porphyromonas gingivalis and the mechanism of lethal photosensitization, Photochem. Photobiol., 1998, 68, 370–376.

    Article  CAS  PubMed  Google Scholar 

  14. B. S. Hass and R. B. Webb, Photodynamic effects of dyes on bacteria. IV. Lethal effects of acridine orange and 460- or 500-nm monochromatic light in strains of Escherichia coli that differ in repair capability, Mutat. Res., 1981, 81, 277–285.

    Article  CAS  PubMed  Google Scholar 

  15. A. Kubin, F. Wierrani, R. H. Jindra, H. G. Loew, W. Grunberger, R. Ebermann and G. Alth, Antagonistic effects of combination photosensitization by hypericin, meso-tetrahydroxyphenylchlorin (mTHPC) and photofrin II on Staphylococcus aureus, Drugs Exp. Clin. Res., 1999, 25, 13–21.

    CAS  PubMed  Google Scholar 

  16. T. T. Yoshikawa, Antimicrobial resistance and aging: beginning of the end of the antibiotic era?, J. Am. Geriatr. Soc., 2002, 50, S226–S229.

    Article  PubMed  Google Scholar 

  17. B. A. Cunha, Antibiotic resistance. Control strategies, Crit. Care Clin., 1998, 14, 309–327.

    Article  CAS  PubMed  Google Scholar 

  18. G. H. Cassell and J. Mekalanos, Development of antimicrobial agents in the era of new and reemerging infectious diseases and increasing antibiotic resistance, JAMA, J. Am. Med. Assoc., 2001, 285, 601–605.

    Article  CAS  Google Scholar 

  19. K. E. Cerveny, A. DePaola, D. H. Duckworth and P. A. Gulig, Phage therapy of local and systemic disease caused by Vibrio vulnificus in iron-dextran-treated mice, Infect. Immun., 2002, 70, 6251–6262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. U. S. Sajjan, L. T. Tran, N. Sole, C. Rovaldi, A. Akiyama, P. M. Friden, J. F. Forstner and D. M. Rothstein, P-113D, an antimicrobial peptide active against Pseudomonas aeruginosa, retains activity in the presence of sputum from cystic fibrosis patients, Antimicrob. Agents Chemother., 2001, 45, 3437–3444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chemother., 1998, 42, 13–28.

    Article  CAS  PubMed  Google Scholar 

  22. M. Wainwright, D. A. Phoenix, S. L. Laycock, D. R. Wareing and P. A. Wright, Photobactericidal activity of phenothiazinium dyes against methicillin-resistant strains of Staphylococcus aureus, FEMS Microbiol. Lett., 1998, 160, 177–181.

    Article  CAS  PubMed  Google Scholar 

  23. M. Wilson and C. Yianni, Killing of methicillin-resistant Staphylococcus aureus by low-power laser light, J. Med. Microbiol., 1995, 42, 62–66.

    Article  CAS  PubMed  Google Scholar 

  24. C. Raab, Ber die wirkung fluoreszierender stoffe auf infusoria, Z. Biol., 1900, 39, 524–546.

    CAS  Google Scholar 

  25. A. Jesionek and H. von Tappeiner, Zur behandlung der hautcarcinomit mit fluorescierenden stoffen, Muench. Med. Wochenschr., 1903, 47, 2042–2044.

    Google Scholar 

  26. W. Hausmann, Die sensibilisierende wirkung tierscher farbstoffe und ihne physiologische bedeutung, Wien. Klin. Wochenschr., 1908, 21, 1527–1529.

    Google Scholar 

  27. L. Benov, I. Batinic-Haberle, I. Spasojevic and I. Fridovich, Isomeric N-alkylpyridylporphyrins and their Zn(II) complexes: inactive as SOD mimics but powerful photosensitizers, Arch. Biochem. Biophys., 2002, 402, 159–165.

    Article  CAS  PubMed  Google Scholar 

  28. Y. Nitzan and H. Ashkenazi, Photoinactivation of Acinetobacter baumannii and Escherichia coli B by a cationic hydrophilic porphyrin at various light wavelengths, Curr. Microbiol., 2001, 42, 408–414.

    Article  CAS  PubMed  Google Scholar 

  29. B. Zeina, J. Greenman, W. M. Purcell and B. Das, Killing of cutaneous microbial species by photodynamic therapy, Br. J. Dermatol., 2001, 144, 274–278.

    Article  CAS  PubMed  Google Scholar 

  30. P. I. Tolstykh, E. F. Stranadko, U. M. Koraboev, A. Urinov, M. P. Tolstykh, R. P. Terekhova, N. N. Volkova and V. A. Duvanskii, Experimental study of photodynamic effect on bacterial wound microflora, Zh. Mikrobiol. Epidemiol. Immunobiol., 2001, 85–87.

    Google Scholar 

  31. M. N. Usacheva, M. C. Teichert and M. A. Biel, Comparison of the methylene blue and toluidine blue photobactericidal efficacy against gram-positive and gram-negative microorganisms, Lasers Surg. Med., 2001, 29, 165–173.

    Article  CAS  PubMed  Google Scholar 

  32. F. Gabor, K. Szocs, P. Maillard and G. Csik, Photobiological activity of exogenous and endogenous porphyrin derivatives in Escherichia coli and Enterococcus hirae cells, Radiat. Environ. Biophys., 2001, 40, 145–151.

    Article  CAS  PubMed  Google Scholar 

  33. G. Bertoloni, F. M. Lauro, G. Cortella and M. Merchat, Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells, Biochim. Biophys. Acta, 2000, 1475, 169–174.

    Article  CAS  PubMed  Google Scholar 

  34. K. Szocs, F. Gabor, G. Csik and J. Fidy, delta-Aminolaevulinic acid-induced porphyrin synthesis and photodynamic inactivation of Escherichia coli B, J. Photochem. Photobiol., B, 1999, 50, 8–17.

    Article  CAS  Google Scholar 

  35. P. S. Golding, T. A. King, L. Maddocks, D. B. Drucker and A. S. Blinkhorn, Photosensitization of Staphylococcus aureus with malachite green isothiocyanate: inactivation efficiency and spectroscopic analysis, J. Photochem. Photobiol., B, 1998, 47, 202–210.

    Article  CAS  Google Scholar 

  36. F. W. van der Meulen, K. Ibrahim, H. J. Sterenborg, L. V. Alphen, A. Maikoe and J. Dankert, Photodynamic destruction of Haemophilus parainfluenzae by endogenously produced porphyrins, J. Photochem. Photobiol., B, 1997, 40, 204–208.

    Article  Google Scholar 

  37. A. Minnock, D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish and S. B. Brown, Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both gram-negative and gram-positive bacteria, J. Photochem. Photobiol., B, 1996, 32, 159–164.

    Article  CAS  Google Scholar 

  38. Y. Nitzan, R. Dror, H. Ladan, Z. Malik, S. Kimel and V. Gottfried, Structure-activity relationship of porphines for photoinactivation of bacteria, Photochem. Photobiol., 1995, 62, 342–347.

    Article  CAS  PubMed  Google Scholar 

  39. R. Shawar and B. H. Cooper, Comparative kinetics of hematoporphyrin derivative uptake and susceptibility of Bacillus subtilis and Streptococcus faecalis to photodynamic action, Photochem. Photobiol., 1990, 52, 825–830.

    Article  CAS  PubMed  Google Scholar 

  40. J. Bedwell, J. Holton, D. Vaira, A. J. MacRobert and S. G. Bown, In vitro killing of Helicobacter pylori with photodynamic therapy, Lancet, 1990, 335, 1287.

    Article  CAS  PubMed  Google Scholar 

  41. T. A. Dahl, W. R. Midden and D. C. Neckers, Comparison of photodynamic action by Rose Bengal in gram-positive and gram-negative bacteria, Photochem. Photobiol., 1988, 48, 607–612.

    Article  CAS  PubMed  Google Scholar 

  42. J. P. Martin and N. Logsdon, The role of oxygen radicals in dye-mediated photodynamic effects in Escherichia coli B, J. Biol. Chem., 1987, 262, 7213–7219.

    Article  CAS  PubMed  Google Scholar 

  43. J. G. Banks, R. G. Board, J. Carter and A. D. Dodge, The cytotoxic and photodynamic inactivation of micro-organisms by Rose Bengal, J. Appl. Bacteriol., 1985, 58, 391–400.

    Article  CAS  PubMed  Google Scholar 

  44. Z. Malik, H. Ladan and Y. Nitzan, Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions, J. Photochem. Photobiol., B, 1992, 14, 262–266.

    Article  CAS  Google Scholar 

  45. Y. Nitzan, M. Gutterman, Z. Malik and B. Ehrenberg, Inactivation of gram-negative bacteria by photosensitized porphyrins, Photochem. Photobiol., 1992, 55, 89–96.

    Article  CAS  PubMed  Google Scholar 

  46. Y. Nitzan, A. Balzam-Sudakevitz and H. Ashkenazi, Eradication of Acinetobacter baumannii by photosensitized agents in vitro, J. Photochem. Photobiol., B, 1998, 42, 211–218.

    Article  CAS  Google Scholar 

  47. Z. Malik, H. Ladan, Y. Nitzan and B. Ehrenberg, The bactericidal activity of a deuteroporphyrin-hemin mixture on gram-positive bacteria. A microbiological and spectroscopic study, J. Photochem. Photobiol., B, 1990, 6, 419–430.

    Article  CAS  Google Scholar 

  48. G. Bertoloni, F. Rossi, G. Valduga, G. Jori and J. van Lier, Photosensitizing activity of water- and lipid-soluble phthalocyanines on Escherichia coli, FEMS Microbiol. Lett., 1990, 59, 149–155.

    Article  CAS  PubMed  Google Scholar 

  49. M. Wilson, Photolysis of oral bacteria and its potential use in the treatment of caries and periodontal disease, J. Appl. Bacteriol., 1993, 75, 299–306.

    Article  CAS  PubMed  Google Scholar 

  50. M. Wilson, J. Dobson and W. Harvey, Sensitisation of oral bacteria to killing by low-power laser irradiation, Curr. Microbiol., 1992, 25, 77–81.

    Article  CAS  PubMed  Google Scholar 

  51. C. E. Millson, M. Wilson, A. J. Macrobert, J. Bedwell and S. G. Bown, The killing of Helicobacter pylori by low-power laser light in the presence of a photosensitiser, J. Med. Microbiol., 1996, 44, 245–252.

    Article  CAS  PubMed  Google Scholar 

  52. M. Wilson and J. Pratten, Lethal photosensitisation of Staphylococcus aureus in vitro: effect of growth phase, serum, and pre-irradiation time, Lasers Surg. Med., 1995, 16, 272–276.

    Article  CAS  PubMed  Google Scholar 

  53. M. Merchat, G. Bertolini, P. Giacomini, A. Villanueva and G. Jori, Meso-substituted cationic porphyrins as efficient photosensitizers of gram-positive and gram-negative bacteria, J. Photochem. Photobiol., B, 1996, 32, 153–157.

    Article  CAS  Google Scholar 

  54. A. Minnock, D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish and S. B. Brown, Mechanism of uptake of a cationic water-soluble pyridinium zinc phthalocyanine across the outer membrane of Escherichia coli, Antimicrob. Agents Chemother., 2000, 44, 522–527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. T. A. Dahl, W. R. Midden and P. E. Hartman, Pure singlet oxygen cytotoxicity for bacteria, Photochem. Photobiol., 1987, 46, 345–352.

    Article  CAS  PubMed  Google Scholar 

  56. T. A. Dahl, W. R. Midden and P. E. Hartman, Comparison of killing of gram-negative and gram-positive bacteria by pure singlet oxygen, J. Bacteriol., 1989, 171, 2188–2194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. S. A. Bezman, P. A. Burtis, T. P. Izod and M. A. Thayer, Photodynamic inactivation of E. coli by rose bengal immobilized on polystyrene beads, Photochem. Photobiol., 1978, 28, 325–329.

    Article  CAS  PubMed  Google Scholar 

  58. J. S. Friedberg, R. G. Tompkins, S. L. Rakestraw, S. W. Warren, A. J. Fischman and M. L. Yarmush, Antibody-targeted photolysis. Bacteriocidal effects of Sn (IV) chlorin e6-dextran-monoclonal antibody conjugates, Ann. N. Y. Acad. Sci., 1991, 618, 383–393.

    Article  PubMed  Google Scholar 

  59. L. Strong, D. M. Yarmush and M. L. Yarmush, Antibody-targeted photolysis. Photophysical, biochemical, and pharmacokinetic properties of antibacterial conjugates, Ann. N. Y. Acad. Sci., 1994, 745, 297–320.

    Article  CAS  PubMed  Google Scholar 

  60. S. Gross, A. Brandis, L. Chen, V. Rosenbach-Belkin, S. Roehrs, A. Scherz and Y. Salomon, Protein-A-mediated targeting of bacteriochlorophyll-IgG to Staphylococcus aureus: a model for enhanced site-specific photocytotoxicity, Photochem. Photobiol., 1997, 66, 872–878.

    Article  CAS  PubMed  Google Scholar 

  61. R. J. Fiel, N. Datta-Gupta, E. H. Mark and J. C. Howard, Induction of DNA damage by porphyrin photosensitizers, Cancer Res., 1981, 41, 3543–3545.

    CAS  PubMed  Google Scholar 

  62. S. Menezes, M. A. Capella and L. R. Caldas, Photodynamic action of methylene blue: repair and mutation in Escherichia coli, J. Photochem. Photobiol., B, 1990, 5, 505–517.

    Article  CAS  Google Scholar 

  63. M. Capella, A. M. Coelho and S. Menezes, Effect of glucose on photodynamic action of methylene blue in Escherichia coli cells, Photochem. Photobiol., 1996, 64, 205–210.

    Article  CAS  PubMed  Google Scholar 

  64. B. S. Hass and R. B. Webb, Photodynamic effects of dyes on bacteria. III. Mutagenesis by acridine orange and 500-nm monochromatic light in strains of Escherichia coli that differ in repair capability, Mutat. Res., 1979, 60, 1–11.

    Article  CAS  PubMed  Google Scholar 

  65. F. P. Imray and D. G. MacPhee, The role of DNA polymerase I and the rec system in survival of bacteria and bacteriophages damaged by the photodynamic action of acridine orange, Mol. Gen. Genet., 1973, 123, 289–298.

    Article  CAS  PubMed  Google Scholar 

  66. M. Schafer, C. Schmitz and G. Horneck, High sensitivity of Deinococcus radiodurans to photodynamically-produced singlet oxygen, Int. J. Radiat. Biol., 1998, 74, 249–253.

    Article  CAS  PubMed  Google Scholar 

  67. G. Valduga, B. Breda, G. M. Giacometti, G. Jori and E. Reddi, Photosensitization of wild and mutant strains of Escherichia coli by meso-tetra (N-methyl-4-pyridyl)porphine, Biochem. Biophys. Res. Commun., 1999, 256, 84–88.

    Article  CAS  PubMed  Google Scholar 

  68. K. Konig, M. Teschke, B. Sigusch, E. Glockmann, S. Eick and W. Pfister, Red light kills bacteria via photodynamic action, Cell. Mol. Biol. (Paris), 2000, 46, 1297–1303.

    CAS  Google Scholar 

  69. J. S. Brazier, A note on ultra-violet red fluorescence of anaerobic bacteria in vitro, J. Appl. Bacteriol., 1986, 60, 121–126.

    Article  CAS  PubMed  Google Scholar 

  70. J. S. Brazier, Analysis of the porphyrin content of fluorescent pus by absorption spectrophotometry and high performance liquid chromatography, J. Med. Microbiol., 1990, 33, 29–34.

    Article  CAS  PubMed  Google Scholar 

  71. H. Jousimies-Somer and P. Summanen, Recent taxonomic changes and terminology update of clinically significant anaerobic gram-negative bacteria (excluding spirochetes), Clin. Infect. Dis., 2002, 35, S17–S21.

    Article  PubMed  Google Scholar 

  72. K. Okamoto, K. Nakayama, T. Kadowaki, N. Abe, D. B. Ratnayake and K. Yamamoto, Involvement of a lysine-specific cysteine proteinase in hemoglobin adsorption and heme accumulation by Porphyromonas gingivalis, J. Biol. Chem., 1998, 273, 21-225–21-231.

    Article  CAS  Google Scholar 

  73. H. N. Shah and S. E. Gharbia, Biochemical and chemical analyses of black-pigmented gram-negative anaerobes, FEMS Immunol. Med. Microbiol., 1993, 6, 89–96.

    Article  CAS  PubMed  Google Scholar 

  74. H. N. Shah, R. Bonnett, B. Mateen and R. A. Williams, The porphyrin pigmentation of subspecies of Bacteroides melaninogenicus, Biochem. J., 1979, 180, 45–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. C. A. Henry, M. Judy, B. Dyer, M. Wagner and J. L. Matthews, Sensitivity of Porphyromonas and Prevotella species in liquid media to argon laser, Photochem. Photobiol., 1995, 61, 410–413.

    Article  CAS  PubMed  Google Scholar 

  76. M. R. O’Brian and L. Thony-Meyer, Biochemistry, regulation and genomics of haem biosynthesis in prokaryotes, Adv. Microb. Physiol., 2002, 46, 257–318.

    Article  PubMed  Google Scholar 

  77. A. Johnsson, B. Kjeldstad and T. B. Melo, Fluorescence from pilosebaceous follicles, Arch. Dermatol. Res., 1987, 279, 190–193.

    Article  CAS  PubMed  Google Scholar 

  78. L. C. Lucchina, N. Kollias, R. Gillies, S. B. Phillips, J. A. Muccini, M. J. Stiller, R. J. Trancik and L. A. Drake, Fluorescence photography in the evaluation of acne, J. Am. Acad. Dermatol., 1996, 35, 58–63.

    Article  CAS  PubMed  Google Scholar 

  79. H. Meffert, K. Gaunitz, T. Gutewort and U. J. Amlong, Therapy of acne with visible light. Decreased irradiation time by using a blue-light high-energy lamp, Dermatol. Monatsschr., 1990, 176, 597–603.

    CAS  PubMed  Google Scholar 

  80. T. B. Melo and M. Johnsson, In vivo porphyrin fluorescence for Propionibacterium acnes. A characterization of the fluorescing pigments, Dermatologica, 1982, 164, 167–174.

    Article  CAS  PubMed  Google Scholar 

  81. M. R. Hamblin, A. Ahmadi, M. J. Tolkoff and T. Zahra Light-mediated killing of Helicobacter pylori in vitro and ex vivo, in 30th Annual Meeting of the American Society for Photobiology, Quebec City, Canada, American Society for Photobiology, Washington, DC, 2002, pp. 30–31.

    Google Scholar 

  82. Q. Peng, T. Warloe, K. Berg, J. Moan, M. Kongshaug, K. E. Giercksky and J. M. Nesland, 5-Aminolevulinic acid-based photodynamic therapy. Clinical research and future challenges, Cancer, 1997, 79, 2282–2308.

    Article  CAS  PubMed  Google Scholar 

  83. K. Szocs, G. Csik, A. D. Kaposi and J. Fidy, In situ detection of ALA-stimulated porphyrin metabolic products in Escherichia coli B by fluorescence line narrowing spectroscopy, Biochim. Biophys. Acta, 2001, 1541, 170–178.

    Article  CAS  PubMed  Google Scholar 

  84. M. G. Strakhovskaya, A. O. Shumarina, G. Y. Fraikin and A. B. Rubin, Synthesis of protoporphyrin IX induced by 5-aminolevulinic acid in yeast cells in the presence of 2,2;-dipyridyl, Biokhimiya (Moscow), 1998, 63, 725–728.

    CAS  Google Scholar 

  85. M. G. Strakhovskaya, E. V. Ivanova, O. A. Kolesnikova and G. Y. Fraikin, Effect of 2,2′-dipyridyl on accumulation of protoporphyrin IX and its derivatives in yeast mitochondria and plasma membranes, Biokhimiya (Moscow), 1999, 64, 213–216.

    CAS  Google Scholar 

  86. M. G. Strakhovskaya, A. O. Shumarina, G. Fraikin and A. B. Rubin, Endogenous porphyrin accumulation and photosensitization in the yeast Saccharomyces cerevisiae in the presence of 2,2′-dipyridyl, J. Photochem. Photobiol., B, 1999, 49, 18–22.

    Article  CAS  Google Scholar 

  87. N. S. Soukos, M. Wilson, T. Burns and P. M. Speight, Photodynamic effects of toluidine blue on human oral keratinocytes and fibroblasts and Streptococcus sanguis evaluated in vitro, Lasers Surg. Med., 1996, 18, 253–259.

    Article  CAS  PubMed  Google Scholar 

  88. M. Soncin, C. Fabris, A. Busetti, D. Dei, D. Nistri, G. Roncucci and G. Jori, Approaches to selectivity in the Zn(II)–phthalocyanine photosensitized inactivation of wild-type and antibiotic-resistant Staphylococcus aureus, Photochem. Photobiol. Sci., 2002, 1, 815–819.

    Article  CAS  PubMed  Google Scholar 

  89. P. L. deHaseth, M. L. Zupancic and M. T. Record, Jr., RNA polymerase-promoter interactions: the comings and goings of RNA polymerase, J. Bacteriol., 1998, 180, 3019–3025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. S. Callaci, E. Heyduk and T. Heyduk, Core RNA polymerase from E. coli induces a major change in the domain arrangement of the sigma 70 subunit, Mol. Cell, 1999, 3, 229–238.

    Article  CAS  PubMed  Google Scholar 

  91. R. Hengge-Aronis, R. Lange, N. Henneberg and D. Fischer, Osmotic regulation of rpoS-dependent genes in Escherichia coli, J. Bacteriol., 1993, 175, 259–265.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. H. I. Zgurskaya, M. Keyhan and A. Matin, The sigma S level in starving Escherichia coli cells increases solely as a result of its increased stability, despite decreased synthesis, Mol. Microbiol., 1997, 24, 643–651.

    Article  CAS  PubMed  Google Scholar 

  93. M. R. Parsek, D. L. Val, B. L. Hanzelka, J. E. Cronan, Jr. and E. P. Greenberg, Acyl homoserine-lactone quorum-sensing signal generation, Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 4360–4365.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. E. Cabiscol, J. Tamarit and J. Ros, Oxidative stress in bacteria and protein damage by reactive oxygen species, Int. Microbiol., 2000, 3, 3–8.

    CAS  PubMed  Google Scholar 

  95. P. J. Pomposiello and B. Demple, Redox-operated genetic switches: the SoxR and OxyR transcription factors, Trends Biotechnol., 2001, 19, 109–114.

    Article  CAS  PubMed  Google Scholar 

  96. L. Leive, The barrier function of the gram-negative envelope, Ann. N. Y. Acad. Sci., 1974, 235, 109–129.

    Article  CAS  PubMed  Google Scholar 

  97. L. Leive and V. Kollin, Controlling EDTA treatment to produce permeable Escherichia coli with normal metabolic processes, Biochem. Biophys. Res. Commun., 1967, 28, 229–236.

    Article  CAS  PubMed  Google Scholar 

  98. H. G. Boman, Peptide antibiotics: holy or heretic grails of innate immunity?, Scand. J. Immunol., 1996, 43, 475–482.

    Article  CAS  PubMed  Google Scholar 

  99. R. E. Hancock and A. Bell, Antibiotic uptake into gram-negative bacteria, Eur. J. Clin. Microbiol. Infect. Dis., 1988, 7, 713–720.

    Article  CAS  PubMed  Google Scholar 

  100. B. Christensen, J. Fink, R. B. Merrifield and D. Mauzerall, Channel-forming properties of cecropins and related model compounds incorporated into planar lipid membranes, Proc. Natl. Acad. Sci. U. S. A., 1988, 85, 5072–5076.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. M. Vaara and T. Vaara, Polycations as outer membrane-disorganizing agents, Antimicrob. Agents Chemother., 1983, 24, 114–122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. M. Vaara and T. Vaara, Polycations sensitize enteric bacteria to antibiotics, Antimicrob. Agents Chemother., 1983, 24, 107–113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. I. M. Helander, H. L. Alakomi, K. Latva-Kala and P. Koski, Polyethyleneimine is an effective permeabilizer of gram-negative bacteria, Microbiology, 1997, 143, 3193–3199.

    Article  CAS  PubMed  Google Scholar 

  104. R. E. Hancock and P. G. Wong, Compounds which increase the permeability of the Pseudomonas aeruginosa outer membrane, Antimicrob. Agents Chemother., 1984, 26, 48–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. N. S. Soukos, M. R. Hamblin and T. Hasan, The effect of charge on cellular uptake and phototoxicity of polylysine chlorin e6 conjugates, Photochem. Photobiol., 1997, 65, 723–729.

    Article  CAS  PubMed  Google Scholar 

  106. C. R. Rovaldi, A. Pievsky, N. A. Sole, P. M. Friden, D. M. Rothstein and P. Spacciapoli, Photoactive porphyrin derivative with broad-spectrum activity against oral pathogens in vitro, Antimicrob. Agents Chemother., 2000, 44, 3364–3367.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. L. Polo, A. Segalla, G. Bertoloni, G. Jori, K. Schaffner and E. Reddi, Polylysine-porphycene conjugates as efficient photosensitizers for the inactivation of microbial pathogens, J. Photochem. Photobiol., B, 2000, 59, 152–158.

    Article  CAS  Google Scholar 

  108. F. Lauro, P. Pretto, L. Covolo, G. Jori and G. Bertoloni, Photoinactivation of bacterial strains involved in periodontal diseases sensitized by porphycene–polylysine conjugates, Photochem. Photobiol. Sci., 2002, 1, 468–470.

    Article  CAS  PubMed  Google Scholar 

  109. M. R. Hamblin, D. A. O’Donnell, N. Murthy, K. Rajagopalan, N. Michaud, M. E. Sherwood and T. Hasan, Polycationic photosensitizer conjugates: effects of chain length and Gram classification on the photodynamic inactivation of bacteria, J. Antimicrob. Chemother., 2002, 49, 941–951.

    Article  CAS  PubMed  Google Scholar 

  110. N. Komerik, M. Wilson and S. Poole, The effect of photodynamic action on two virulence factors of gram-negative bacteria, Photochem. Photobiol., 2000, 72, 676–680.

    Article  CAS  PubMed  Google Scholar 

  111. C. M. Allen, J. M. Weber and J. E. van Lier, Sulfophthalocyanines for photodynamic inactivation of viruses in blood products: effect of structural modifications, Photochem. Photobiol., 1995, 62, 184–189.

    Article  CAS  PubMed  Google Scholar 

  112. H. Mohr, B. Lambrecht and A. Selz, Photodynamic virus inactivation of blood components, Immunol. Invest., 1995, 24, 73–85.

    Article  CAS  PubMed  Google Scholar 

  113. R. Santus, P. Grellier, J. Schrevel, J. C. Maziere and J. F. Stoltz, Photodecontamination of blood components: advantages and drawbacks, Clin. Hemorheol. Microcirc., 1998, 18, 299–308.

    CAS  PubMed  Google Scholar 

  114. F. Kasermann and C. Kempf, Photodynamic inactivation of enveloped viruses by buckminsterfullerene, Antiviral Res., 1997, 34, 65–70.

    Article  CAS  PubMed  Google Scholar 

  115. A. C. Moor, A. E. Wagenaars-van Gompel, A. Brand, M. A. Dubbelman and J. VanSteveninck, Primary targets for photoinactivation of vesicular stomatitis virus by AIPcS4 or Pc4 and red light, Photochem. Photobiol., 1997, 65, 465–470.

    Article  CAS  PubMed  Google Scholar 

  116. B. Bachmann, J. Knuver-Hopf, B. Lambrecht and H. Mohr, Target structures for HIV-1 inactivation by methylene blue and light, J. Med. Virol., 1995, 47, 172–178.

    Article  CAS  PubMed  Google Scholar 

  117. J. B. Hudson, J. Zhou, J. Chen, L. Harris, L. Yip and G. H. Towers, Hypocrellin, from Hypocrella bambuase, is phototoxic to human immunodeficiency virus, Photochem. Photobiol., 1994, 60, 253–255.

    Article  CAS  PubMed  Google Scholar 

  118. J. Lenard, A. Rabson and R. Vanderoef, Photodynamic inactivation of infectivity of human immunodeficiency virus and other enveloped viruses using hypericin and rose bengal: inhibition of fusion and syncytia formation, Proc. Natl. Acad. Sci. U. S. A., 1993, 90, 158–162.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. H. Mohr, B. Lambrecht and H. Schmitt, Photo-inactivation of viruses in therapeutical plasma, Dev. Biol. Stand., 1993, 81, 177–183.

    CAS  PubMed  Google Scholar 

  120. F. Sieber, J. M. O’Brien and D. K. Gaffney, Merocyanine-sensitized photoinactivation of enveloped viruses, Blood Cells, 1992, 18, 117–127.

    CAS  PubMed  Google Scholar 

  121. S. Carpenter and G. A. Kraus, Photosensitization is required for inactivation of equine infectious anemia virus by hypericin, Photochem. Photobiol., 1991, 53, 169–174.

    Article  CAS  PubMed  Google Scholar 

  122. M. M. Judy, J. L. Matthews, J. T. Newman, H. L. Skiles, R. L. Boriack, J. L. Sessler, M. Cyr, B. G. Maiya and S. T. Nichol, In vitro photodynamic inactivation of herpes simplex virus with sapphyrins: 22 pi-electron porphyrin-like macrocycles, Photochem. Photobiol., 1991, 53, 101–107.

    Article  CAS  PubMed  Google Scholar 

  123. H. C. Neyndorff, D. L. Bartel, F. Tufaro and J. G. Levy, Development of a model to demonstrate photosensitizer-mediated viral inactivation in blood, Transfusion, 1990, 30, 485–490.

    Article  CAS  PubMed  Google Scholar 

  124. T. C. Chanh, J. S. Allan, J. L. Matthews, F. Sogandares-Bernal, M. M. Judy, H. Skiles, J. Leveson, A. Marengo-Rowe and J. T. Newman, Photodynamic inactivation of simian immunodeficiency virus, J. Virol. Methods, 1989, 26, 125–131.

    Article  CAS  PubMed  Google Scholar 

  125. J. L. Matthews, J. T. Newman, F. Sogandares-Bernal, M. M. Judy, H. Skiles, J. E. Leveson, A. J. Marengo-Rowe and T. C. Chanh, Photodynamic therapy of viral contaminants with potential for blood banking applications, Transfusion, 1988, 28, 81–83.

    Article  CAS  PubMed  Google Scholar 

  126. J. S. Friedberg, C. Skema, E. D. Baum, J. Burdick, S. A. Vinogradov, D. F. Wilson, A. D. Horan and I. Nachamkin, In vitro effects of photodynamic therapy on Aspergillus fumigatus, J. Antimicrob. Chemother., 2001, 48, 105–107.

    Article  CAS  PubMed  Google Scholar 

  127. V. Carre, O. Gaud, I. Sylvain, O. Bourdon, M. Spiro, J. Blais, R. Granet, P. Krausz and M. Guilloton, Fungicidal properties of meso-arylglycosylporphyrins: influence of sugar substituents on photoinduced damage in the yeast Saccharomyces cerevisiae, J. Photochem. Photobiol., B, 1999, 48, 57–62.

    Article  CAS  Google Scholar 

  128. G. Lazarova and H. Tashiro, Protective effect of amphotericin B against lethal photodynamic treatment in yeast, Microbios, 1995, 82, 187–196.

    CAS  PubMed  Google Scholar 

  129. M. Paardekooper, A. E. Van Gompel, J. Van Steveninck and P. J. Van den Broek, The effect of photodynamic treatment of yeast with the sensitizer chloroaluminum phthalocyanine on various cellular parameters, Photochem. Photobiol., 1995, 62, 561–567.

    Article  CAS  PubMed  Google Scholar 

  130. R. K. Sharma and V. Jain, Effects of 2-deoxy-D-glucose on the photosensitisation-induced bioenergetic changes in Saccharomyces cerevisiae as observed by in vivo NMR spectroscopy, Indian J. Biochem. Biophys., 1994, 31, 36–42.

    CAS  PubMed  Google Scholar 

  131. G. Lazarova, Effect of glutathione on rose bengal photosensitized yeast damage, Microbios, 1993, 75, 39–43.

    CAS  PubMed  Google Scholar 

  132. G. Bertoloni, F. Rossi, G. Valduga, G. Jori, H. Ali and J. E. van Lier, Photosensitizing activity of water- and lipid-soluble phthalocyanines on prokaryotic and eukaryotic microbial cells, Microbios, 1992, 71, 33–46.

    CAS  PubMed  Google Scholar 

  133. G. E. Cohn and H. Y. Tseng, Photodynamic inactivation of yeast sensitized by eosin Y, Photochem. Photobiol., 1977, 26, 465–474.

    Article  CAS  PubMed  Google Scholar 

  134. M. Paardekooper, P. J. Van den Broek, A. W. De Bruijne, J. G. Elferink, T. M. Dubbelman and J. Van Steveninck, Photodynamic treatment of yeast cells with the dye toluidine blue: all-or-none loss of plasma membrane barrier properties, Biochim. Biophys. Acta, 1992, 1108, 86–90.

    Article  CAS  PubMed  Google Scholar 

  135. P. Grellier, R. Santus, E. Mouray, V. Agmon, J. C. Maziere, D. Rigomier, A. Dagan, S. Gatt and J. Schrevel, Photosensitized inactivation of Plasmodium falciparum- and Babesia divergens-infected erythrocytes in whole blood by lipophilic pheophorbide derivatives, Vox Sang., 1997, 72, 211–220.

    Article  CAS  PubMed  Google Scholar 

  136. X. J. Zhao, S. Lustigman, Y. S. Li, M. E. Kenney and E. Ben-Hur, Structure-activity and mechanism studies on silicon phthalocyanines with Plasmodium falciparum in the dark and under red light, Photochem. Photobiol., 1997, 66, 282–287.

    Article  CAS  PubMed  Google Scholar 

  137. R. Kliukiene, A. Maroziene, N. Cenas, K. Becker and J. S. Blanchard, Photoinactivation of trypanothione reductase and glutathione reductase by Al-phthalocyanine tetrasulfonate and hematoporphyrin, Biochem. Biophys. Res. Commun., 1996, 218, 629–632.

    Article  CAS  PubMed  Google Scholar 

  138. Z. Alouini and M. Jemli, Destruction of helminth eggs by photosensitized porphyrin, J. Environ. Monit., 2001, 3, 548–51.

    Article  CAS  PubMed  Google Scholar 

  139. C. E. Millson, M. Wilson, A. J. MacRobert and S. G. Bown, Ex-vivo treatment of gastric Helicobacter infection by photodynamic therapy, J. Photochem. Photobiol., B, 1996, 32, 59–65.

    Article  CAS  Google Scholar 

  140. S. Sarkar and M. Wilson, Lethal photosensitization of bacteria in subgingival plaque from patients with chronic periodontitis, J. Periodont. Res., 1993, 28, 204–210.

    Article  CAS  Google Scholar 

  141. M. Wilson, Bactericidal effect of laser light and its potential use in the treatment of plaque-related diseases, Int. Dent. J., 1994, 44, 181–189.

    CAS  PubMed  Google Scholar 

  142. S. Wood, B. Nattress, J. Kirkham, R. Shore, S. Brookes, J. Griffiths and C. Robinson, An in vitro study of the use of photodynamic therapy for the treatment of natural oral plaque biofilms formed in vivo, J. Photochem. Photobiol., B, 1999, 50, 1–7.

    Article  CAS  Google Scholar 

  143. K. Lasocki, M. Szpakowska, J. Grzybowski and A. Graczyk, Examination of antibacterial activity of the photoactivated arginine haematoporphyrin derivative, Pharmacol. Res., 1999, 39, 181–184.

    Article  CAS  PubMed  Google Scholar 

  144. F. Berthiaume, S. Reiken, M. Toner, R. Tompkins and M. Yarmush, Antibody-targeted photolysis of bacteria in vivo, Biotechnology, 1994, 12, 703–706.

    CAS  PubMed  Google Scholar 

  145. A. Orenstein, D. Klein, J. Kopolovic, E. Winkler, Z. Malik, N. Keller and Y. Nitzan, The use of porphyrins for eradication of Staphylococcus aureus in burn wound infections, FEMS Immunol. Med. Microbiol., 1997, 19, 307–314.

    Article  CAS  PubMed  Google Scholar 

  146. M. C. Teichert, J. W. Jones, M. N. Usacheva and M. A. Biel, Treatment of oral candidiasis with methylene blue-mediated photodynamic therapy in an immunodeficient murine model, Oral Surg., Oral Med., Oral Pathol., Oral Radiol. Endod., 2002, 93, 155–160.

    Article  CAS  Google Scholar 

  147. M. R. Hamblin, D. A. O’Donnell, N. Murthy, C. H. Contag and T. Hasan, Rapid control of wound infections by targeted photodynamic therapy monitored by in vivo bioluminescence imaging, Photochem. Photobiol., 2002, 75, 51–57.

    Article  CAS  PubMed  Google Scholar 

  148. C. H. Contag, P. R. Contag, J. I. Mullins, S. D. Spilman, D. K. Stevenson and D. A. Benaron, Photonic detection of bacterial pathogens in living hosts, Mol. Microbiol., 1995, 18, 593–603.

    Article  CAS  PubMed  Google Scholar 

  149. D. A. Benaron, P. R. Contag and C. H. Contag, Imaging brain structure and function, infection and gene expression in the body using light, Philos. Trans. R. Soc. London, Ser. B, 1997, 352, 755–761.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. W. Zhang, P. R. Contag, A. Madan, D. K. Stevenson and C. H. Contag, Bioluminescence for biological sensing in living mammals, Adv. Exp. Med. Biol., 1999, 471, 775–784.

    Article  CAS  PubMed  Google Scholar 

  151. M. R. Hamblin, T. Zahra, C. H. Contag, A. T. McManus and T. Hasan, Optical monitoring and treatment of potentially lethal wound infections in vivo, J. Infect. Dis., 2003, 187, 1717–1725.

    Article  PubMed  Google Scholar 

  152. A. P. Roome, A. E. Tinkler, A. L. Hilton, D. G. Montefiore and D. Waller, Neutral red with photoinactivation in the treatment of herpes genitalis, Br. J. Vener. Dis., 1975, 51, 130–133.

    CAS  PubMed  PubMed Central  Google Scholar 

  153. J. L. Melnick and W. E. Rawls, Photoinactivation of herpes simplex virus continues to look promising, JAMA, J. Am. Med. Assoc., 1973, 226, 79–80.

    Article  CAS  Google Scholar 

  154. L. E. Bockstahler, C. D. Lytle and K. B. Hellman, A review of photodynamic therapy for herpes simplex: benefits and potential risks, N. Y. J. Dent., 1975, 45, 148–157.

    CAS  PubMed  Google Scholar 

  155. M. G. Myers, M. N. Oxman, J. E. Clark and K. A. Arndt, Failure of neutral-red photodynamic inactivation in recurrent herpes simplex virus infections, N. Engl. J. Med., 1975, 293, 945–949.

    Article  CAS  PubMed  Google Scholar 

  156. T. W. Chang, Viral photoinactivation and oncogenesis, Arch. Dermatol., 1976, 112, 1176.

    Article  CAS  PubMed  Google Scholar 

  157. M. J. Shikowitz, A. L. Abramson, K. Freeman, B. M. Steinberg and M. Nouri, Efficacy of DHE photodynamic therapy for respiratory papillomatosis: immediate and long-term results, Laryngoscope., 1998, 108, 962–967.

    Article  CAS  PubMed  Google Scholar 

  158. A. L. Abramson, M. J. Shikowitz, V. M. Mullooly, B. M. Steinberg, C. A. Amella and H. R. Rothstein, Clinical effects of photodynamic therapy on recurrent laryngeal papillomas, Arch. Otolaryngol. Head Neck Surg., 1992, 118, 25–29.

    Article  CAS  PubMed  Google Scholar 

  159. J. Bujia, J. Feyh and E. Kastenbauer, Photodynamic therapy with derivatives from hemotoporphyrines for recurrent laryngeal papillomatosis of the children. Early results, An. Otorrinolaringol. Ibero Am., 1993, 20, 251–259.

    CAS  PubMed  Google Scholar 

  160. S. Karrer, R. M. Szeimies, C. Abels, U. Wlotzke, W. Stolz and M. Landthaler, Epidermodysplasia verruciformis treated using topical 5-aminolaevulinic acid photodynamic therapy, Br. J. Dermatol., 1999, 140, 935–938.

    Article  CAS  PubMed  Google Scholar 

  161. E. S. Abdel-Hady, P. Martin-Hirsch, M. Duggan-Keen, P. L. Stern, J. V. Moore, G. Corbitt, H. C. Kitchener and I. N. Hampson, Immunological and viral factors associated with the response of vulval intraepithelial neoplasia to photodynamic therapy, Cancer Res., 2001, 61, 192–196.

    CAS  PubMed  Google Scholar 

  162. G. F. Lombard, S. Tealdi and M. M. Lanotte, The treatment of neurosurgical infections by lasers and porphyrins, in Photodynamic Therapy of Tumors and other Diseases, ed. G. Jori and C. A. Perria, Edizione Libreria Progetto, Padova, 1985, pp. 363–366.

    Google Scholar 

  163. S. Hjalmarsson, M. Sjolund and L. Engstrand, Determining antibiotic resistance in Helicobacter pylori, Expert Rev. Mol. Diagn., 2002, 2, 267–272.

    Article  CAS  PubMed  Google Scholar 

  164. H. H. Xia, B. C. Yu Wong, N. J. Talley and S. K. Lam, Alternative and rescue treatment regimens for Helicobacter pylori eradication, Expert Opin. Pharmacother., 2002, 3, 1301–1311.

    Article  CAS  PubMed  Google Scholar 

  165. C. H. Wilder-Smith, P. Wilder-Smith, P. Grosjean, H. Van Den Bergh, A. Woodtli, P. Monnier, G. Dorta, F. Meister and G. Wagnieres, Photoeradication of Helicobacter pylori using 5-aminolevulinic acid: preliminary human studies, Lasers Surg. Med., 2002, 31, 18–22.

    Article  PubMed  Google Scholar 

  166. W. Hongcharu, C. R. Taylor, Y. Chang, D. Aghassi, K. Suthamjariya and R. R. Anderson, Topical ALA-photodynamic therapy for the treatment of acne vulgaris, J. Invest. Dermatol., 2000, 115, 183–192.

    Article  CAS  PubMed  Google Scholar 

  167. Y. Itoh, Y. Ninomiya, S. Tajima and A. Ishibashi, Photodynamic therapy for acne vulgaris with topical 5-aminolevulinic acid, Arch. Dermatol., 2000, 136, 1093–1095.

    Article  CAS  PubMed  Google Scholar 

  168. Y. Itoh, Y. Ninomiya, S. Tajima and A. Ishibashi, Photodynamic therapy of acne vulgaris with topical delta-aminolaevulinic acid and incoherent light in Japanese patients, Br. J. Dermatol., 2001, 144, 575–579.

    Article  CAS  PubMed  Google Scholar 

  169. B. E. Dunn, H. Cohen and M. J. Blaser, Helicobacter pylori, Clin. Microbiol. Rev., 1997, 10, 720–741.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Hamblin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hamblin, M.R., Hasan, T. Photodynamic therapy: a new antimicrobial approach to infectious disease?. Photochem Photobiol Sci 3, 436–450 (2004). https://doi.org/10.1039/b311900a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/b311900a

Navigation