Skip to main content

Advertisement

Log in

Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

A 4-component antibody-phthalocyanine-polyethylene glycol-gold nanoparticle conjugate is described for use as a potential drug for targeted photodynamic cancer therapy. Gold nanoparticles (4 nm) were stabilised with a self-assembled layer of a zinc-phthalocyanine derivative (photosensitiser) and a heterobifunctional polyethylene glycol. Anti-HER2 monoclonal antibodies were covalently bound to the nanoparticles via a terminal carboxy moiety on the polyethylene glycol. The nanoparticle conjugates were stable towards aggregation, and under irradiation with visible red light efficiently produced cytotoxic singlet oxygen. Cellular experiments demonstrated that the nanoparticle conjugates selectively target breast cancer cells that overexpress the HER2 epidermal growth factor cell surface receptor, and that they are effective photodynamic therapy agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Chen, S. Mwakwari and A. Oyelere, Gold nanoparticles: From nanomedicine to nanosensing, Nanotechnology, 2008, 1, 45–66.

    CAS  Google Scholar 

  2. M. Brust, M. Walker, D. Bethell, D. J. Schiffrin and R. Whyman, Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system, J. Chem. Soc., Chem. Commun., 1994, 801–802.

    Google Scholar 

  3. C. J. Ackerson, P. D. Jadzinsky and R. D. Kornberg, Thiolate ligands for synthesis of water-soluble gold clusters, J. Am. Chem. Soc., 2005, 127, 6550–6551.

    Article  CAS  PubMed  Google Scholar 

  4. D. K. Chatterjee, L. S. Fong and Y. Zhang, Nanoparticles in photodynamic therapy: An emerging paradigm, Adv. Drug Delivery Rev., 2008, 60, 1627–1637.

    Article  CAS  Google Scholar 

  5. J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z. Y. Li, H. Zhang, Y. Xia and X. Li, Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells, Nano Lett., 2007, 7, 1318–1322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. X. Huang, I. H. El-Sayed, W. Qian and M. A. El-Sayed, Cancer cell imaging and photothermal therapy in the near-infrared region by using gold nanorods, J. Am. Chem. Soc., 2006, 128, 2115–2120.

    Article  CAS  PubMed  Google Scholar 

  7. L. R. Hirsch, R. J. Stafford, J. A. Bankson, S. R. Sershen, B. Rivera, R. E. Price, J. D. Hazle, N. J. Halas and J. L. West, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proc. Natl. Acad. Sci. U. S. A., 2003, 100, 13549–13554.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. P. Mukherjee, R. Bhattacharya, N. Bone, Y. K. Lee, C. R. Patra, S. Wang, L. Lu, C. Secreto, P. C. Banerjee, M. J. Yaszemski, N. E. Kay and D. Mukhopadhyay, Potential therapeutic application of gold nanoparticles in b-chronic lymphocytic leukemia (BCLL): enhancing apoptosis, J. Nanobiotechnol., 2007, 5, 4.

    Article  CAS  Google Scholar 

  9. X. Huang, W. Qian, I. H. El-Sayed and M. A. El-Sayed, The potential use of the enhanced nonlinear properties of gold nanospheres in photothermal cancer therapy, Lasers Surg. Med., 2007, 39, 747–753.

    Article  PubMed  Google Scholar 

  10. R. R. Allison, H. C. Mota, V. S. Bagnato and C. H. Sibata, Bionanotechnology and photodynamic therapy–State of the art review, Photodiagn. Photodyn. Ther., 2008, 5, 19–28.

    Article  CAS  Google Scholar 

  11. C. M. Allen, W. M. Sharman and J. E. Van Lier, Current status of phthalocyanines in the photodynamic therapy of cancer, J. Porphyrins Phthalocyanines, 2001, 5, 161–169.

    Article  CAS  Google Scholar 

  12. S. B. Brown, E. A. Brown and I. Walker, The present and future role of photodynamic therapy in cancer treatment, Lancet Oncol., 2004, 5, 497–508.

    Article  CAS  PubMed  Google Scholar 

  13. M. E. Wieder, D. C. Hone, M. J. Cook, M. M. Handsley, J. Gavrilovic and D. A. Russell, Intracellular photodynamic therapy with photosensitizer-nanoparticle conjugates: cancer therapy using a ‘Trojan horse’, Photochem. Photobiol. Sci., 2006, 5, 727–734.

    Article  CAS  PubMed  Google Scholar 

  14. D. C. Hone, P. I. Walker, R. Evans-Gowing, S. FitzGerald, A. Beeby, I. Chambrier, M. J. Cook and D. A. Russell, Generation of cytotoxic singlet oxygen via phthalocyanine-stabilized gold nanoparticles: A potential delivery vehicle for photodynamic therapy, Langmuir, 2002, 18, 2985–2987.

    Article  CAS  Google Scholar 

  15. M. Camerin, M. Magaraggia, M. Soncin, G. Jori, M. Moreno, I. Chambrier, M. J. Cook and D. A. Russell, The in vivo efficacy of phthalocyanine-nanoparticle conjugates for the photodynamic therapy of amelanotic melanoma, Eur. J. Cancer, 2010, 46, 1910–1918.

    Article  CAS  PubMed  Google Scholar 

  16. M. Zhang, T. Murakami, K. Ajima, K. Tsuchida, A. S. D. Sandanayaka, O. Ito, S. Iijima and M. Yudasaka, Fabrication of ZnPc/protein nanohorns for double photodynamic and hyperthermic cancer phototherapy, Proc. Natl. Acad. Sci. U. S. A., 2008, 105, 14773–14778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. W. Eck, G. Craig, A. Sigdel, G. Ritter, L. J. Old, L. Tang, M. F. Brennan, P. J. Allen and M. D. Mason, PEGylated gold nanoparticles conjugated to monoclonal F19 antibodies as targeted labeling agents for human pancreatic carcinoma tissue, ACS Nano, 2008, 2, 2263–2272.

    Article  CAS  PubMed  Google Scholar 

  18. Y. Cheng, A. C. Samia, J. D. Meyers, I. Panagopoulos, B. Fei and C. Burda, Highly efficient drug delivery with gold nanoparticle vectors for in vivo photodynamic therapy of cancer, J. Am. Chem. Soc., 2008, 130, 10643–10647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. S. Herrwerth, T. Rosendahl, C. Feng, J. Fick, W. Eck, M. Himmelhaus, R. Dahint and M. Grunze, Covalent coupling of antibodies to selfassembled monolayers of carboxy-functionalized poly(ethylene glycol): Protein resistance and specific binding of biomolecules, Langmuir, 2003, 19, 1880–1887.

    Article  CAS  Google Scholar 

  20. Y. Liu, M. K. Shipton, J. Ryan, E. D. Kaufman, S. Franzen and D. L. Feldheim, Synthesis, stability, and cellular internalization of gold nanoparticles containing mixed peptide-poly(ethylene glycol) monolayers, Anal. Chem., 2007, 79, 2221–2229.

    Article  CAS  PubMed  Google Scholar 

  21. Z. Grabarek and J. Gergely, Zero-length crosslinking procedure with the use of active esters, Anal. Biochem., 1990, 185, 131–135.

    Article  CAS  PubMed  Google Scholar 

  22. B. A. Lindig, M. A. J. Rodgers and A. P. Schaap, Determination of the lifetime of singlet oxygen in D2O using 9, 10-anthracenedipropionic acid, a water-soluble probe, J. Am. Chem. Soc., 1980, 102, 5590–5593.

    Article  CAS  Google Scholar 

  23. S. Tolnai, A method for viable cell count, Tissue Culture Association Manual, 1975, 1, 37–38.

    Article  Google Scholar 

  24. D. T. Sasaki, S. E. Dumas and E. G. Engleman, Discrimination of viable and non-viable cells using propidium iodide in two color immunofluorescence, Cytometry, 1987, 8, 413–420.

    Article  CAS  PubMed  Google Scholar 

  25. T. Mosmann, Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays, J. Immunol. Methods, 1983, 65, 55–63.

    Article  CAS  PubMed  Google Scholar 

  26. I. Roy, T. Y. Ohulchanskyy, H. E. Pudavar, E. J. Bergey, A. R. Oseroff, J. Morgan, T. J. Dougherty and P. N. Prasad, Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: A novel drug-carrier system for photodynamic therapy, J. Am. Chem. Soc., 2003, 125, 7860–7865.

    Article  CAS  PubMed  Google Scholar 

  27. A. L. Niles, R. A. Moravec, P. E. Hesselberth, M. A. Scurria, W. J. Daily and T. L. Riss, A homogeneous assay to measure live and dead cells in the same sample by detecting different protease markers, Anal. Biochem., 2007, 366, 197–206.

    Article  CAS  PubMed  Google Scholar 

  28. S. P. M. Crouch, R. Kozlowski, K. J. Slater and J. Fletcher, The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity, J. Immunol. Methods, 1993, 160, 81–88.

    Article  CAS  PubMed  Google Scholar 

  29. M. Mano, Vinorelbine in the management of breast cancer: New perspectives, revived role in the era of targeted therapy, Cancer Treat. Rev., 2006, 32, 106–118.

    Article  CAS  PubMed  Google Scholar 

  30. J. Duy, L. B. Connell, W. Eck, S. D. Collins and R. L. Smith, Preparation of surfactant-stabilized gold nanoparticle-peptide nucleic acid conjugates, J. Nanopart. Res., 2010, 12, 2363–2369.

    Article  CAS  Google Scholar 

  31. J. G. Kenna, G. N. Major and R. S. Williams, Methods for reducing non-specific antibody binding in enzyme-linked immunosorbent assays, J. Immunol. Methods, 1985, 85, 409–419.

    Article  CAS  PubMed  Google Scholar 

  32. N. E. Koval’skaya, N. A. Kuznetsova, O. L. Kaliya, N. S. Gretsova and I. V. Sokolova, The efficiency of the formation of singlet oxygen by a sensitizer based on zinc phthalocyanine, Journal of Applied Spectroscopy, 2001, 68, 287–290.

    Article  Google Scholar 

  33. V. Iliev, V. Alexiev and L. Bilyarska, Effect of metal phthalocyanine complex aggregation on the catalytic and photocatalytic oxidation of sulfur containing compounds, J. Mol. Catal. A: Chem., 1999, 137, 15–22.

    Article  CAS  Google Scholar 

  34. M. J. Cook, I. Chambrier, S. J. Cracknell, D. A. Mayes and D. A. Russell, Octa-alkyl zinc phthalocyanines: potential photosensitizers for use in the photodynamic therapy of cancer, Photochem. Photobiol., 1995, 62, 542–545.

    Article  CAS  PubMed  Google Scholar 

  35. M. C. Daniel and D. Astruc, Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology, Chem. Rev., 2004, 104, 293–346.

    Article  CAS  PubMed  Google Scholar 

  36. G. Schmid, M. Baumle, M. Geerkens, I. Heim, C. Osemann and T. Sawitowski, Current and future applications of nanoclusters, Chem. Soc. Rev., 1999, 28, 179–185.

    Article  CAS  Google Scholar 

  37. B. D. Chithrani, A. A. Ghazani and W. C. Chan, Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells, Nano Lett., 2006, 6, 662–668.

    Article  CAS  PubMed  Google Scholar 

  38. S. Hatz, J. D. C. Lambert and P. R. Ogilby, Measuring the lifetime of singlet oxygen in a single cell: Addressing the issue of cell viability, Photochem. Photobiol. Sci., 2007, 6, 1106–1116.

    Article  CAS  PubMed  Google Scholar 

  39. E. Buytaert, M. Dewaele and P. Agostinis, Molecular effectors of multiple cell death pathways initiated by photodynamic therapy, Biochim. Biophys. Acta, Rev. Cancer, 2007, 1776, 86–107.

    Article  CAS  Google Scholar 

  40. N. L. Oleinick and I. Belichenko, The role of apoptosis in response to photodynamic therapy: What, where, why, and how, Photochem. Photobiol. Sci., 2002, 1, 1–21.

    Article  CAS  PubMed  Google Scholar 

  41. C. Fabris, G. Valduga, G. Miotto, L. Borsetto, G. Jori, S. Garbisa and E. Reddi, Photosensitization with zinc(II) phthalocyanine as a switch in the decision between apoptosis and necrosis, Cancer Res., 2001, 61, 7495–7500.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David A. Russell.

Additional information

This article is published as part of a themed issue on immunological aspects and drug delivery technologies in PDT.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Stuchinskaya, T., Moreno, M., Cook, M.J. et al. Targeted photodynamic therapy of breast cancer cells using antibody-phthalocyanine-gold nanoparticle conjugates. Photochem Photobiol Sci 10, 822–831 (2011). https://doi.org/10.1039/c1pp05014a

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c1pp05014a

Navigation