Skip to main content
Log in

Photobiological characteristics of chlorophyll a derivatives as microbial PDT agents

  • Paper
  • Published:
Photochemical & Photobiological Sciences Aims and scope Submit manuscript

Abstract

Chlorin-e6 (chl-e6) and a hydrogenated derivative (chl-e6H) were semi-synthesized, and their photophysical properties and photodynamic activity against Escherichia coli, Staphylococcus aureus and Candida albicans evaluated. Methyl pheophorbide-a (Mepheo-a) was obtained from S. maxima using methanolic extraction with acid catalysis (CH3OH—H2SO4). Chlorin-e6 was prepared from Mepheo-a by basic hydrolysis with H2O―acetone and NaOH. Hydrogenated Chlorin-e6 was synthesized by a similar procedure starting from the hydrogenated methyl pheophorbide-a (Mepheo-aH). Photophysical studies were performed in order to determine the singlet oxygen quantum yield of chl-e6H which is higher than that of chl-e6. The microorganism inactivation of chl-e6 and chl-e6H was investigated at two concentrations and three fluence levels. Both chl-e6 and chl-e6H showed microorganism inactivation against Gram-positive bacteria and a fungus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes and references

  1. R. R. Allison, V. S. Bagnato, R. Cuenca, G. H. Downie, C. H. Sibata, The future of photodynamic therapy on oncology, Future Oncol., 2006, 2, 53–71.

    Article  CAS  PubMed  Google Scholar 

  2. K. Plaetzer, B. Krammer, J. Berlanda, F. Berr, T. Kiesslich, Photophysics photochemistry of photodynamic therapy: fundamental aspects, Laser Med. Sci., 2009, 24, 259–268.

    Article  CAS  Google Scholar 

  3. D. J. Granville, B. M. McManus, D. W. C. Hunt, Photodynamic therapy: shedding light on the biochemical pathways regulating porphyrin-mediated cell death, Histol. Histopathol., 2001, 16, 309–317.

    CAS  PubMed  Google Scholar 

  4. M. R. Hamblin, T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. G. Jori, C. Fabris, M. Soncin, S. Ferro, O. Coppellotti, D. Dei, L. Fantetti, G. Chiti, G. Roncucci, Photodynamic therapy in the treatment of microbial infections: basic principles and perspective applications, Laser Surg. Med., 2006, 38, 468–481.

    Article  Google Scholar 

  6. X. Zhang, W. Guo, Imidazole functionalized magnesium phthalocyanine photosensitizer: modified photophysics, singlet oxygen generation and photooxidation mechanism, J. Phys. Chem., 2012, 116, 7651–7657.

    Article  CAS  Google Scholar 

  7. P. Calzavara-Pinton, M. T. Rossi, R. Sala, M. Venturini, Photodynamic antifungal chemotherapy, Photochem. Photobiol., 2012, 88, 512–522.

    Article  CAS  PubMed  Google Scholar 

  8. R. Ackroyd, C. Kelty, N. Brown, M. Reed, The history of photodetection and photodynamic therapy, Photochem. Photobiol., 2001, 74, 656–669.

    Article  CAS  PubMed  Google Scholar 

  9. R. J. Porra, Recent progress in phorphyrin and chlorophyll biosynthesis, Photochem. Photobiol., 1997, 65, 492–516.

    Article  CAS  Google Scholar 

  10. M. Wainwright, Photodynamic antimicrobial chemotherapy (PACT), J. Antimicrob. Chemother., 1998, 42, 13–28.

    Article  CAS  PubMed  Google Scholar 

  11. G. Bertoloni, F. M. Lauro, G. Cortrella, M. Merchat, Photosensitizing activity of hematoporphyrin on Staphylococcus aureus cells, Biochim. Biophys. Acta, 2000, 1475, 169–174.

    Article  CAS  PubMed  Google Scholar 

  12. K. T. de Oliveira, A. M. S. Silva, A. C. Tomé, M. G. P. M. S. Neves, C. R. Neri, V. S. Garcia, O. A. Serra, Y. Iamamoto, J. A. S. Cavaleiro, Synthesis of new amphiphilic chlorin derivatives from protoporphyrin IX dimethyl ester, Tetrahedron, 2008, 64, 8709–8715.

    Article  CAS  Google Scholar 

  13. A. F. Uchoa, K. T. de Oliveira, M. S. Baptista, A. J. Bortoluzzi, Y. Iamamoto, O. A. Serra, Chlorin photosensitizer sterically designed to prevent self-aggregation, J. Org. Chem., 2011, 76, 8824–8832.

    Article  CAS  PubMed  Google Scholar 

  14. F. F. de Assis, J. M. de Souza, B. H. K. Assis, T. J. Brocksom, K. T. de Oliveira, Synthesis and photophysical studies of a chlorin sterically designed to prevent self-aggregation, Dyes Pigm., 2013, 98, 153–159.

    Article  CAS  Google Scholar 

  15. E. S. Nyman, P. H. Hynninen, Research advances in the use of tetrapyrrolic photosensitizes for photodynamic therapy, J. Photochem. Photobiol., B, 2004, 73, 1–28.

    Article  CAS  Google Scholar 

  16. A. D. Djalil, N. A. Nurulita, L. W. Limantara, S. Ibrahim, D. H. Tjahjono, Biological evaluations of protoporphyrin IX, pheophorbide a and its 1-hidroxyethyl derivatives for applications in photodynamic therapy, Int. J. Pharm. Pharm. Sci., 2012, 4, 741–746.

    CAS  Google Scholar 

  17. N. S. Soukos, L. A. Ximenez-Fyvie, M. R. Hamblin, S. S. Socransky, T. Hasan, Targeted Antimicrobial Photochemotherapy, Antimicrob. Agents Chemother., 1998, 42, 10 2595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. S. Douillard, D. Olivier, T. Patrice, In vitro and in vivo evaluation of Radachlorin sensitizer for photodynamic therapy, Photochem. Photobiol. Sci., 2009, 8, 405–413.

    Article  CAS  PubMed  Google Scholar 

  19. A. P. J. Maestrin, C. R. Neri, K. T. de Oliveira, O. A. Serra, Y. Iamamoto, Extração e purificação de clorofila a, da alga Spirulina maxima: um experimento para os cursos de química, Quim. Nova, 2009, 32, 1670–1672.

    Article  CAS  Google Scholar 

  20. R. W. Redmond, J. N. Gamlin, A compilation of singlete oxygen yields from biologically relevant molecules, Photochem. Photobiol., 1999, 70, 391–475.

    Article  CAS  PubMed  Google Scholar 

  21. M. G. Lagorio, L. E. Dicello, E. S. Roman, Quantum yield of singlet molecular oxygen sensitization by copper(II) tetracarboxyphthalocyanine, J. Photochem. Photobiol., B, 1989, 3, 615–624.

    Article  CAS  Google Scholar 

  22. M. Goksel, M. Durmus, D. Atilla, A comparative study on photophysical and photochemical properties of zinc phthalocyanines with different molecular symmetries, J. Porphyrins Phthalocyanines, 2012, 16, 895–906.

    Article  CAS  Google Scholar 

  23. P. F. C. Menezes, C. A. S. Melo, V. S. Bagnato, H. Imasato, J. R. Perussi, Dark cytotoxicity of the photoproducts of the photosensitezer photogen after photobleacheaching induced by a laser, Laser Phys., 2005, 15, 435–442.

    CAS  Google Scholar 

  24. V. Engelhardt, B. Krammer, K. Plaetzer, Antibacterial photodynamic therapy using water-soluble formulation of hypericin or m-THPC is effective in inactivation of Staphylococcus aureus, Photochem. Photobiol. Sci., 2010, 9, 365–369.

    Article  CAS  PubMed  Google Scholar 

  25. P. S. Thakuri, R. Joshi, S. Basnet, S. S. Pandey, S. D. Taujale, N. Mishra, Antibacterial photodynamic therapy on Staphylococcus aureus and pseudomonas aeruginosa in vitro, Nepal Med. Coll. J., 2011, 13, 281–284.

    CAS  PubMed  Google Scholar 

  26. M. Grinholc, B. Szramka, K. Olender, A. Graczyk, Bactericidal effect of photodynamic therapy against methicillin-resistant Staphylococcus aureus strain with the use of various porphyrin photosensitizers, Acta Biochim. Pol., 2007, 54, 665–670.

    Article  CAS  PubMed  Google Scholar 

  27. Z. Malik, H. Ladan, Y. Nitzan, Photodynamic inactivation of Gram-negative bacteria: problems and possible solutions, J. Photochem. Photobiol., B, 1992, 14, 262–266.

    Article  CAS  Google Scholar 

  28. G. P. Tegos, M. Anbe, C. Yang, T. N. Demidova, M. Satti, P. Mroz, S. Janjua, F. Gad, M. R. Hamblin, Protease-stable polycationic photosensitizer conjugates between polyethileneimine and chlorin (e6) for broad-spectrum antimicrobial photoinactivation, Antimicrob. Agents Chemother., 2006, 50, 1402–1410.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Z. Malik, J. Hanania, Y. Nitzan, New trends in photobiology bactericidal effects of photoactivated porphyrins–an alternative approach to antimicrobial drugs, J. Photochem. Photobiol., B, 1990, 5, 281–293.

    Article  CAS  Google Scholar 

  30. Y. Nitzan, M. Gutterman, Z. Malik, B. Ehrenberg, Inactivation of gram-negative bacteria by photosensitized porphyrins, Photochem. Photobiol., 1992, 55, 89–96.

    Article  CAS  PubMed  Google Scholar 

  31. J. Park, Y. Moon, I. Bang, Y. Kim, S. Kim, S. Ahn, J. Yoon, Antimicrobial effect of photodynamic therapy using a highly pure chlorin e6, Laser Med. Sci., 2010, 25, 705–710.

    Article  Google Scholar 

  32. A. Preuß, L. Zeugner, S. Hackbarth, M. A. F. Faustino, M. G. P. M. S. Neves, J. A. S. Cavaleiro, B. Roeder, Photoinactivation of Escherichia coli (SURE2) without intracellular uptake of the photosensitizer, J. Appl. Microbiol., 2004, 114, 36–43.

    Article  CAS  Google Scholar 

  33. G. Jori, S. B. Brown, Photosensitized inactivation of microorganisms, Photochem. Photobiol. Sci., 2004, 3, 403–405.

    Article  CAS  PubMed  Google Scholar 

  34. A. Minnock, D. I. Vernon, J. Schofield, J. Griffiths, J. H. Parish, S. B. Brown, Photoinactivation of bacteria. Use of a cationic water-soluble zinc phthalocyanine to photoinactivate both Gram-negative and Gram-positive bacteria, J. Photochem. Photobiol., B, 1996, 32, 159–164.

    Article  CAS  Google Scholar 

  35. M. R. Hamblin, T. Hasan, Photodynamic therapy: a new antimicrobial approach to infectious disease?, Photochem. Photobiol. Sci., 2004, 3, 436–450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. T. Maisch, R. Szeimies, G. Jori, G. Abels, Antibacterial photodynamic therapy in dermatology, Photochem. Photobiol. Sci., 2004, 3, 907–917.

    Article  CAS  PubMed  Google Scholar 

  37. L. N. Dovigo, A. C. Pavarina, D. G. Ribeiro, C. S. Adriano, V. S. Bagnato, Photodynamic inactivation of four Candida species induced by photogem®, Braz. J. Microbiol., 2010, 41, 42–49.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Z. E. Hughes, A. E. Mark, R. L. Mancera, Molecular Dynamics Simulations of the Interactions of DMSO with DPPC and DOPC Phospholipid Membranes, J. Phys. Chem. B, 2012, 116, 11911–11923.

    Article  CAS  PubMed  Google Scholar 

  39. A. C. Williams, B. W. Barry, Penetration enhancers, Adv. Drug Delivery Rev., 2004, 56, 603–618.

    Article  CAS  Google Scholar 

  40. F. He, W. Liu, S. Zheng, L. Zhou, B. Ye, Z. Qi, Ion transport through dimethyl sulfoxide (DMSO) induced transient water pores in cell membranes, Mol. Membr. Biol., 2012, 29, 107–113.

    Article  CAS  PubMed  Google Scholar 

  41. M. C. Gomes, S. Silva, M. A. F. Faustino, M. G. P. M. S. Neves, A. Almeida, J. A. S. Cavaleiro, J. P. C. Tomé, A. Cunha, Cationic galactoporphyrin photosensitisers against UV-B resistant bacteria: oxidation of lipids and proteins by 1O2, Photochem. Photobiol. Sci., 2013, 12, 262–271.

    Article  CAS  PubMed  Google Scholar 

  42. E. Alves, L. Costa, C. M. B. Carvalho, J. P. C. Tomé, M. A. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, Â. Cunha, A. Almeida, Charge effect on the photoinactivation of Gram-negative and Gram-positive bacteria by cationic meso-substituted porphyrins, BMC Microbiol., 2009, 9, 70 1–13.

    Google Scholar 

  43. C. M. B. Carvalho, E. Alves, L. Costa, J. P. C. Tome, M. A. F. Faustino, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, A. Almeida, A. Cunha, Z. Lin, J. Rocha, Functional Cationic Nanomagnet_Porphyrin Hybrids for the Photoinactivation of Microorganisms, ACS Nano, 2010, 4, 7133–7140.

    Article  CAS  PubMed  Google Scholar 

  44. J. A. Hargus, F. R. Fronczek, M. G. H. Vicente, K. M. Smith, Mono(L)-aspatylchlorin-e6, Photochem. Photobiol., 2007, 83, 1006–1015.

    Article  CAS  PubMed  Google Scholar 

  45. N. R. S. Gobo, T. J. Brocksom, J. Zukerman-Schpector, K. T. de Oliveira, Synthesis of an octa-tert-buthylphthalocyanine: a low-aggregation and photochemically stable photosensitizer, Eur. J. Org. Chem., 2013, 5028–5031.

    Google Scholar 

  46. F. A. B. dos Santos, A. F. Uchoa, M. S. Baptista, Y. Iamamoto, O. A. Serra, T. J. Brocksom, K. T. de Oliveira, Synthesis of functionalized chlorins sterically-prevented from self-aggregation, Dyes Pigm., 2013, 99, 402–411.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina Kurachi.

Additional information

Electronic supplementary information (ESI) available. See DOI: 10.1039/c3pp50376c

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uliana, M.P., Pires, L., Pratavieira, S. et al. Photobiological characteristics of chlorophyll a derivatives as microbial PDT agents. Photochem Photobiol Sci 13, 1137–1145 (2014). https://doi.org/10.1039/c3pp50376c

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1039/c3pp50376c

Navigation