Klin Monbl Augenheilkd 2010; 227(9): 681-693
DOI: 10.1055/s-0029-1245606
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Intravitreale Medikamenteneingabe bei retinalem Venenverschluss – pathophysiologische Mechanismen und angewandte Substanzen

Intravitreal Drug Therapy for Retinal Vein Occlusion – Pathophysiological Mechanisms and Routinely Used DrugsN. Feltgen1 , A. Pielen2 , L. Hansen2 , B. Bertram3 , H. Agostini2 , G. B. Jaissle4 , H. Hoerauf1 , A. Stahl2, 5
  • 1Universitäts-Augenklinik Göttingen
  • 2Universitäts-Augenklinik Freiburg
  • 3Augenarztpraxis Aachen
  • 4Universitäts-Augenklinik Tübingen
  • 5Department of Ophthalmology, Children’s Hospital Boston, Harvard Medical School
Weitere Informationen

Publikationsverlauf

Eingegangen: 1.6.2010

Angenommen: 2.7.2010

Publikationsdatum:
15. September 2010 (online)

Zusammenfassung

Die intravitreale Medikamenteninjektion ist innerhalb weniger Jahre ein fester Bestandteil in der Behandlung des retinalen Venenverschlusses geworden. Bei den verwendeten Substanzen, von denen mittlerweile mehrere in großen randomisierten Studien getestet wurden, handelt es sich um Kortikosteroide einerseits und Inhibitoren des vaskulären endothelialen Gefäßwachstumsfaktors VEGF andererseits. Die Behandlungserfolge, die sich mit den meisten dieser Medikamente erzielen lassen, haben auch zu neuen Erkenntnissen der pathophysiologischen Vorgänge geführt. In dem vorliegenden Übersichtsartikel werden die aktuellen Substanzen und ihre Wirkungsweise diskutiert, die Daten der klinischen Studien kritisch evaluiert und die neue Therapieoption der intravitrealen Medikamenteneingabe in das bisher etablierte Behandlungsschema des retinalen Venenverschlusses eingefügt.

Abstract

The novel therapeutic principle of intravitreal drug therapy for retinal vein occlusion has become an integrated constituent of clinical practice over the last years. The two substance classes that have been evaluated in large randomised clinical trials so far are corticosteroids and inhibitors of vascular endothelial growth factor (VEGF). The reported treatment success of these intravitreally administered substances has lead not only to a paradigm shift in clinical care but has also advanced our understanding of the underlying pathophysiological principles of retinal vein occlusions. In this review the different substances are discussed, their mechanisms of action are analysed and the results of the large clinical trials available to date are critically evaluated. Furthermore, an approach to integrate these novel treatment options into the exisitng treatment regimes for retinal vein occlusions is suggested.

Literatur

  • 1 Sedney S. Photocoagulation and retinal vein occlusion.  Documenta ophthalmologica. 1976;  40 1-241
  • 2 [Position of the Retinological Society, the German Ophthalmological Society and the Professional Association of Ophthalmologists in Germany on the current therapeutic possibilities for neovascular age-related macular degeneration] Stellungnahme der Retinologischen Gesellschaft, der Deutschen Ophthalmologischen Gesellschaft und des Berufsverbands der Augenärzte Deutschlands zu aktuellen therapeutischen Möglichkeiten bei der neovaskulären altersabhängigen Makuladegeneration.  Klin Monbl Augenheilkd. 2007;  224 559-566
  • 3 Lardenoye C W, Probst K, DeLint P J et al. Photoreceptor function in eyes with macular edema.  Investigative ophthalmology & visual science. 2000;  41 4048-4053
  • 4 Wu L, Martinez-Castellanos M A, Quiroz-Mercado H et al. Twelve-month safety of intravitreal injections of bevacizumab (Avastin): results of the Pan-American Collaborative Retina Study Group (PACORES).  Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. 2008;  246 81-87
  • 5 Stahl A, Feltgen N, Fuchs A et al. Electrophysiological evaluation of retinal photoreceptor function after repeated bevacizumab injections.  Documenta ophthalmologica. 2009;  118 81-88
  • 6 Spaide R F, Chang L K, Klancnik J M et al. Prospective study of intravitreal ranibizumab as a treatment for decreased visual acuity secondary to central retinal vein occlusion.  American journal of ophthalmology. 2009;  147 298-306
  • 7 Gregori N Z, Gaitan J, Rosenfeld P J et al. Long-term safety and efficacy of intravitreal bevacizumab (Avastin) for the management of central retinal vein occlusion.  Retina. 2008;  28 1325-1337
  • 8 Prager F, Michels S, Kriechbaum K et al. Intravitreal bevacizumab (Avastin) for macular oedema secondary to retinal vein occlusion: 12-month results of a prospective clinical trial.  The British journal of ophthalmology. 2009;  93 452-456
  • 9 Jaissle G, Szurman P, Feltgen N et al. Predictive Factors for Functional Improvement after Intravitreal Bevacizumab Therapy for Macular Edema due to Branch Retinal Vein Occlusion. Joint Congress of the Asia Pacific Academy of Ophthalmology and the American Academy of Ophthalmology. Bali, Indonesia; 2010
  • 10 Wu L, Arevalo J F, Berrocal M H et al. Comparison of two doses of intravitreal bevacizumab as primary treatment for macular edema secondary to branch retinal vein occlusions: results of the Pan American Collaborative Retina Study Group at 24 months.  Retina. 2009;  29 1396-1403
  • 11 Stahl A, Struebin I, Hansen L L et al. Bevacizumab in central retinal vein occlusion: a retrospective analysis after 2 years of treatment.  European journal of ophthalmology. 2010;  20 180-185
  • 12 Cugati S, Cikamatana L, Wang J J et al. Five-year incidence and progression of vascular retinopathy in persons without diabetes: the Blue Mountains Eye Study.  Eye. 2006;  20 1239-1245
  • 13 Cugati S, Wang J J, Knudtson M D et al. Retinal vein occlusion and vascular mortality: pooled data analysis of 2 population-based cohorts.  Ophthalmology. 2007;  114 520-524
  • 14 Cugati S, Wang J J, Rochtchina E et al. Ten-year incidence of retinal vein occlusion in an older population: the Blue Mountains Eye Study.  Archives of ophthalmology. 2006;  124 726-732
  • 15 Brown G. Central retinal vein obstruction: diagnosis and management. In RD R, ed Ophthalmology Annual.. East Norwalk: Appleton&Lange; 1985: 65-97
  • 16 David R, Zangwill L, Badarna M et al. Epidemiology of retinal vein occlusion and its association with glaucoma and increased intraocular pressure.  Ophthalmologica Journal international d’ophtalmologie International journal of ophthalmology. 1988;  197 69-74
  • 17 Hayreh S S. Retinal vein occlusion. [Review] [64 refs].  Indian Journal of Ophthalmology. 1994;  42 109-132
  • 18 Seitz R. Die Netzhautgefäße. Ferdinand Enke Verlag. Stuttgart; 1962 1 ed: 175
  • 19 Nagaoka T, Yoshida A. Noninvasive evaluation of wall shear stress on retinal microcirculation in humans.  Investigative ophthalmology & visual science. 2006;  47 1113-1119
  • 20 Wiek J, Schade M, Wiederholt M et al. Haemorheological changes in patients with retinal vein occlusion after isovolaemic haemodilution.  The British journal of ophthalmology. 1990;  74 665-669
  • 21 Boyd S R, Zachary I, Chakravarthy U et al. Correlation of increased vascular endothelial growth factor with neovascularization and permeability in ischemic central vein occlusion.  Archives of ophthalmology. 2002;  120 1644-1650
  • 22 Stahl A, Buchwald A, Martin G et al. Vitreal levels of erythropoietin are increased in patients with retinal vein occlusion and correlate with vitreal VEGF and the extent of macular edema.  Retina. 2010;  ; im Druck
  • 23 Garci-Arumi J, Fonollosa A, Macia C et al. Vitreous levels of erythropoietin in patients with macular oedema secondary to retinal vein occlusions: a comparative study with diabetic macular oedema.  Eye. 2009;  23 1066-1071
  • 24 Inomata Y, Hirata A, Takahashi E et al. Elevated erythropoietin in vitreous with ischemic retinal diseases.  Neuroreport. 2004;  15 877-879
  • 25 Semenza G L. Regulation of erythropoietin production. New insights into molecular mechanisms of oxygen homeostasis.  Hematol Oncol Clin North Am. 1994;  8 863-884
  • 26 Forsythe J A, Jiang B H, Iyer N V et al. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1.  Mol Cell Biol. 1996;  16 4604-4613
  • 27 Chen J, Connor K M, Aderman C M et al. Erythropoietin deficiency decreases vascular stability in mice.  J Clin Invest. 2008;  118 526-533
  • 28 Chen J, Connor K M, Aderman C M et al. Suppression of retinal neovascularization by erythropoietin siRNA in a mouse model of proliferative retinopathy.  Investigative ophthalmology & visual science. 2009;  50 1329-1335
  • 29 Junk A K, Mammis A, Savitz S I et al. Erythropoietin administration protects retinal neurons from acute ischemia-reperfusion injury.  Proc Natl Acad Sci U S A. 2002;  99 10659-10664
  • 30 Kooij M A, Groenendaal van der F, Kavelaars A et al. Neuroprotective properties and mechanisms of erythropoietin in in vitro and in vivo experimental models for hypoxia/ischemia.  Brain Res Rev. 2008;  59 22-33
  • 31 Watanabe D, Suzuma K, Matsui S et al. Erythropoietin as a retinal angiogenic factor in proliferative diabetic retinopathy.  The New England journal of medicine. 2005;  353 782-792
  • 32 Grasso G, Sfacteria A, Meli F et al. Neuroprotection by erythropoietin administration after experimental traumatic brain injury.  Brain Res. 2007;  1182 99-105
  • 33 Gunnarson E, Song Y, Kowalewski J M et al. Erythropoietin modulation of astrocyte water permeability as a component of neuroprotection.  Proc Natl Acad Sci U S A. 2009;  106 1602-1607
  • 34 Friedman E A, L’Esperance F A, Brown C D et al. Treating azotemia-induced anemia with erythropoietin improves diabetic eye disease.  Kidney Int Suppl. 2003(87);  S57-S63
  • 35 Chen J, Smith L E. A double-edged sword: erythropoietin eyed in retinopathy of prematurity.  J AAPOS. 2008;  12 221-222
  • 36 Lagreze W A, Feltgen N, Bach M et al. Feasibility of intravitreal erythropoietin injections in humans.  The British journal of ophthalmology. 2009;  93(12) 1667-1671
  • 37 Li W, Sinclair S H, Xu G T. Effects of intravitreal erythropoietin therapy for patients with chronic and progressive diabetic macular edema.  Ophthalmic Surg Lasers Imaging. 2010;  41 18-25
  • 38 Brown D M, Campochiaro P A, Singh R P et al. Ranibizumab for Macular Edema following Central Retinal Vein Occlusion Six-Month Primary End Point Results of a Phase III Study.  Ophthalmology. 2010;  ; online
  • 39 Quinlan P M, Elman M J, Bhatt A K et al. The natural course of central retinal vein occlusion.  American journal of ophthalmology. 1990;  110 118-123
  • 40 CVOS-Group . Natural history and clinical management of central retinal vein occlusion. The Central Vein Occlusion Study Group.  . [comment][erratum appears in Arch Ophthalmol 1997;115 (10): 1275]. Comment in: Arch Ophthalmol 1998; 116 (2): 260 – 261; PMID: 9 488 292 Archives of ophthalmology. 1997;  115 486-491
  • 41 Wroblewski J J, Wells 3rd  J A, Adamis A P et al. Pegaptanib sodium for macular edema secondary to central retinal vein occlusion.  Archives of ophthalmology. 2009;  127 374-380
  • 42 Haller J A, Bandello F, Belfort Jr R et al. Randomized, Sham-Controlled Trial of Dexamethasone Intravitreal Implant in Patients with Macular Edema Due to Retinal Vein Occlusion.  Ophthalmology. 2010;  ; online
  • 43 Ip M S, Scott I U, VanVeldhuisen P C et al. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with observation to treat vision loss associated with macular edema secondary to central retinal vein occlusion: the Standard Care vs. Corticosteroid for Retinal Vein Occlusion (SCORE) study report 5.  Archives of ophthalmology. 2009;  127 1101-1114
  • 44 McIntosh R L, Mohamed Q, Saw S M et al. Interventions for branch retinal vein occlusion: an evidence-based systematic review.  Ophthalmology. 2007;  114 835-854
  • 45 Hayreh S S, Hayreh M S. Hemi-central retinal vein occulsion. Pathogenesis, clinical features, and natural history.  Archives of ophthalmology. 1980;  98 1600-1609
  • 46 Scott I U, Ip M S, Van Veldhuisen P C et al. A randomized trial comparing the efficacy and safety of intravitreal triamcinolone with standard care to treat vision loss associated with macular Edema secondary to branch retinal vein occlusion: the Standard Care vs Corticosteroid for Retinal Vein Occlusion (SCORE) study report 6.  Archives of ophthalmology. 2009;  127 1115-1128
  • 47 Campochiaro P A, Heier J S, Feiner L et al. Ranibizumab for Macular Edema following Branch Retinal Vein Occlusion Six-Month Primary End Point Results of a Phase III Study.  Ophthalmology. 2010;  ; online
  • 48 Rogers S L, McIntosh R L, Lim L et al. Natural History of Branch Retinal Vein Occlusion: An Evidence-Based Systematic Review.  Ophthalmology. 2010;  117(6) 1094-1101 e5
  • 49 Priglinger S G, Wolf A H, Kreutzer T C et al. Intravitreal bevacizumab injections for treatment of central retinal vein occlusion: six-month results of a prospective trial.  Retina. 2007;  27 1004-1012
  • 50 McIntosh R L, Rogers S L, Lim L et al. Natural History of Central Retinal Vein Occlusion: An Evidence-Based Systematic Review.  Ophthalmology. 2010;  ; online
  • 51 Hansen L L. Central retinal vein occlusion. In Joussen A, Gardner T, Kirchhof B, eds Retinal Vascular Disease:. Springer; 2007
  • 52 Dithmar S, Hansen L L, Holz F G. [Retinal vein occlusions].  Ophthalmologe. 2003;  100 561-577 ; quiz 578
  • 53 Hayreh S S, Zimmerman M B, Beri M et al. Intraocular pressure abnormalities associated with central and hemicentral retinal vein occlusion.  Ophthalmology. 2004;  111 133-141
  • 54 BVOS. Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion. A randomized clinical trial. Branch Vein Occlusion Study Group.  Archives of ophthalmology. 1986;  104 34-41
  • 55 CVOS-Group . A randomized clinical trial of early panretinal photocoagulation for ischemic central vein occlusion. The Central Vein Occlusion Study Group N report.[comment].  Comment in: Ophthalmology 1996;103 (3): 352, discussion 353 – 354; PMID: 8 600 408, Comment in: Ophthalmology 1996; 103 (3): 352, discussion 353 – 354; PMID: 8 600 407, Comment in: Ophthalmology 1996; 103 (3): 352 – 354; PMID: 8 600 406. Ophthalmology. 1995;  102 1434-1444
  • 56 Brückner R. Central retinal vein occlusion and its therapy.  Ophthalmologica Journal international d’ophtalmologie International journal of ophthalmology. 1955;  129 325-326
  • 57 Blankenship G W. Evaluation of a single intravitreal injection of dexamethasone phosphate in vitrectomy surgery for diabetic retinopathy complications.  Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. 1991;  229 62-65
  • 58 Penfold P L, Gyory J F, Hunyor A B et al. Exudative macular degeneration and intravitreal triamcinolone. A pilot study.  Australian and New Zealand journal of ophthalmology. 1995;  23 293-298
  • 59 Greenberg P B, Martidis A, Rogers A H et al. Intravitreal triamcinolone acetonide for macular oedema due to central retinal vein occlusion.  The British journal of ophthalmology. 2002;  86 247-248
  • 60 Jonas J B, Kreissig I, Degenring R F. Intravitreal triamcinolone acetonide as treatment of macular edema in central retinal vein occlusion.  Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. 2002;  240 782-783
  • 61 McAllister I L, Vijayasekaran S, Chen S D et al. Effect of triamcinolone acetonide on vascular endothelial growth factor and occludin levels in branch retinal vein occlusion.  American journal of ophthalmology. 2009;  147 838-846, 846 e831-e832
  • 62 Jonas J B, Kreissig I, Degenring R. Intravitreal triamcinolone acetonide for treatment of intraocular proliferative, exudative, and neovascular diseases.  Progress in retinal and eye research. 2005;  24 587-611
  • 63 Zhang X, Bao S, Lai D et al. Intravitreal triamcinolone acetonide inhibits breakdown of the blood-retinal barrier through differential regulation of VEGF-A and its receptors in early diabetic rat retinas.  Diabetes. 2008;  57 1026-1033
  • 64 Edelman J L, Lutz D, Castro M R. Corticosteroids inhibit VEGF-induced vascular leakage in a rabbit model of blood-retinal and blood-aqueous barrier breakdown.  Exp Eye Res. 2005;  80 249-258
  • 65 Wang K, Wang Y, Gao L et al. Dexamethasone inhibits leukocyte accumulation and vascular permeability in retina of streptozotocin-induced diabetic rats via reducing vascular endothelial growth factor and intercellular adhesion molecule-1 expression.  Biol Pharm Bull. 2008;  31 1541-1546
  • 66 Kunikata H, Shimura M, Nakazawa T et al. Chemokines in aqueous humour before and after intravitreal triamcinolone acetonide in eyes with macular oedema associated with branch retinal vein occlusion.  Acta Ophthalmol. 2010;  ; online
  • 67 Wilson C A, Berkowitz B A, Sato Y et al. Treatment with intravitreal steroid reduces blood-retinal barrier breakdown due to retinal photocoagulation.  Archives of ophthalmology. 1992;  110 1155-1159
  • 68 Jeanneteau F, Garabedian M J, Chao M V. Activation of Trk neurotrophin receptors by glucocorticoids provides a neuroprotective effect.  Proc Natl Acad Sci U S A. 2008;  105 4862-4867
  • 69 Kube T, Sutter M, Trittler R et al. Carboxymethylcellulose as a new carrier substance for intravitreal injection of reproducible amounts of triamcinolone.  Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. 2006;  244 1385-1390
  • 70 Bobbili R B, Mathai A. Intravitreal triamcinolone compared with macular laser grid photocoagulation for the treatment of cystoid macular edema.  American journal of ophthalmology. 2006;  142 531 ; author reply 531 – 532
  • 71 Cekic O, Bardak Y, Tig S U et al. Hemodynamic response to intravitreal triamcinolone in eyes with macular edema : Intravitreal triamcinolone and ocular blood flow.  Int Ophthalmol. 2007;  27(5) 313-319
  • 72 Chen S D, Sundaram V, Lochhead J et al. Intravitreal triamcinolone for the treatment of ischemic macular edema associated with branch retinal vein occlusion.  American journal of ophthalmology. 2006;  141 876-883
  • 73 Degenring R F, Kamppeter B, Kreissig I et al. Morphological and functional changes after intravitreal triamcinolone acetonide for retinal vein occlusion.  Acta ophthalmologica Scandinavica. 2003;  81 548-550
  • 74 Flynn H W, Scott I U. Intravitreal triamcinolone acetonide for macular edema associated with diabetic retinopathy and venous occlusive disease: it’s time for clinical trials.  Archives of ophthalmology. 2005;  123 258-259
  • 75 Goff M J, Jumper J M, Yang S S et al. Intravitreal Triamcinolone Acetonide Treatment of Macular Edema Associated with Central Retinal Vein Occlusion.  Retina. 2006;  26 896-901
  • 76 Gregori N Z, Rosenfeld P J, Puliafito C A et al. One-Year Safety and Efficacy of Intravitreal Triamcinolone Acetonide for the Management of Macular Edema Secondary to Central Retinal Vein Occlusion.  Retina. 2006;  26 889-895
  • 77 Hirano Jr Y, Sakurai E, Yoshida M et al. Comparative Study on Efficacy of a Combination Therapy of Triamcinolone Acetonide Administration with and without Vitrectomy for Macular Edema Associated with Branch Retinal Vein Occlusion.  Ophthalmic research. 2007;  39 207-212
  • 78 Ip M S, Gottlieb J L, Kahana A et al. Intravitreal triamcinolone for the treatment of macular edema associated with central retinal vein occlusion.  Archives of ophthalmology. 2004;  122 1131-1136
  • 79 Jonas J B, Akkoyun I, Kamppeter B et al. Intravitreal triamcinolone acetonide for treatment of central retinal vein occlusion.  European journal of ophthalmology. 2005;  15 751-758
  • 80 Jonas J B, Akkoyun I, Kamppeter B et al. Branch retinal vein occlusion treated by intravitreal triamcinolone acetonide.  Eye. 2005;  19 65-71
  • 81 Krepler K, Ergun E, Sacu S et al. Intravitreal triamcinolone acetonide in patients with macular oedema due to branch retinal vein occlusion: a pilot study.  Acta ophthalmologica Scandinavica. 2005;  83 600-604
  • 82 Moschos M M, Brouzas D, Loukianou E et al. Intraocular triamcinolone acetonide for macular edema due to CRVO. A multifocal-ERG and OCT study.  Documenta ophthalmologica. 2007;  114 1-7
  • 83 Oh J Y, Seo J H, Ahn J K et al. Early versus Late Intravitreal Triamcinolone Acetonide for Macular Edema associated with Branch Retinal Vein Occlusion.  Korean J Ophthalmol. 2007;  21 18-20
  • 84 Patel P J, Zaheer I, Karia N. Intravitreal triamcinolone acetonide for macular oedema owing to retinal vein occlusion.  Eye (Lond). 2008;  22(1) 60-64
  • 85 Ramezani A, Entezari M, Moradian S et al. Intravitreal triamcinolone for acute central retinal vein occlusion, a randomized clinical trial.  Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. 2006;  244 1601-1606
  • 86 Hayashi K, Hayashi H. Intravitreal versus retrobulbar injections of triamcinolone for macular edema associated with branch retinal vein occlusion.  American journal of ophthalmology. 2005;  139 972-982
  • 87 Byun Y J, Roh M I, Lee S C et al. Intravitreal triamcinolone acetonide versus bevacizumab therapy for macular edema associated with branch retinal vein occlusion.  Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. 2010;  248(7) 963-971
  • 88 Guthoff R, Meigen T, Hennemann K et al. Comparison of Bevacizumab and Triamcinolone for Treatment of Macular Edema Secondary to Central Retinal Vein Occlusion – A Matched-Pairs Analysis.  Ophthalmologica Journal international d’ophtalmologie International journal of ophthalmology. 2009;  224 126-132
  • 89 Cheng K C, Wu W C, Chen K J. Intravitreal triamcinolone acetonide vs. bevacizumab for treatment of macular oedema secondary to branch retinal vein occlusion.  Eye. 2009;  23 2023-2033
  • 90 Wu W C, Cheng K C, Wu H J. Intravitreal triamcinolone acetonide vs bevacizumab for treatment of macular oedema due to central retinal vein occlusion.  Eye. 2009;  23 2215-2222
  • 91 Nehme A, Edelman J. Dexamethasone inhibits high glucose-, TNF-alpha-, and IL-1beta-induced secretion of inflammatory and angiogenic mediators from retinal microvascular pericytes.  Investigative ophthalmology & visual science. 2008;  49 2030-2038
  • 92 Gan I M, Ugahary L C, Dissel J T et al. Effect of intravitreal dexamethasone on vitreous vancomycin concentrations in patients with suspected postoperative bacterial endophthalmitis.  Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. 2005;  243 1186-1189
  • 93 Zhang Z G, Zhang van L, Jiang Q et al. VEGF enhances angiogenesis and promotes blood-brain barrier leakage in the ischemic brain.  J Clin Invest. 2000;  106 829-838
  • 94 Kaur C, Foulds W S, Ling E A. Hypoxia-ischemia and retinal ganglion cell damage.  Clin Ophthalmol. 2008;  2 879-889
  • 95 Noma H, Funatsu H, Mimura T et al. Changes of vascular endothelial growth factor after vitrectomy for macular edema secondary to retinal vein occlusion.  European journal of ophthalmology. 2008;  18 1017-1019
  • 96 Noma H, Funatsu H, Yamasaki M et al. Pathogenesis of macular edema with branch retinal vein occlusion and intraocular levels of vascular endothelial growth factor and interleukin-6.  American journal of ophthalmology. 2005;  140 256-261
  • 97 Noma H, Minamoto A, Funatsu H et al. Intravitreal levels of vascular endothelial growth factor and interleukin-6 are correlated with macular edema in branch retinal vein occlusion.  Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. 2006;  244 309-315
  • 98 Kim K S, Chang H R, Song S. Ischaemic change after intravitreal bevacizumab (Avastin) injection for macular oedema secondary to non-ischaemic central retinal vein occlusion.  Acta Ophthalmol. 2008;  86 925-927
  • 99 Shimura M, Yasuda K. Macular ischaemia after intravitreal bevacizumab injection in patients with central retinal vein occlusion and a history of diabetes and vascular disease.  The British journal of ophthalmology. 2010;  94 381-383
  • 100 Shetty R, Pai S A, Vincent A et al. Electrophysiological and structural assessment of the central retina following intravitreal injection of bevacizumab for treatment of macular edema.  Documenta ophthalmologica. 2008;  116 129-135
  • 101 Bonini-Filho M, Costa R, Calucci D et al. Intravitreal bevacizumab for diabetic macular edema associated with severe capillary loss: one-year results of a pilot study.  American journal of ophthalmology. 2009;  147 1022-1030
  • 102 Neubauer A, Kook D, Haritoglou C et al. Bevacizumab and retinal ischemia.  Ophthalmology. 2007;  114 2096
  • 103 Wroblewski J J, Wells 3 rd J A, Gonzales C R. Pegaptanib sodium for macular edema secondary to branch retinal vein occlusion.  American journal of ophthalmology. 2010;  149 147-154
  • 104 Badala F. The treatment of branch retinal vein occlusion with bevacizumab.  Current opinion in ophthalmology. 2008;  19 234-238
  • 105 Gregori N Z, Rattan G H, Rosenfeld P J et al. Safety and efficacy of intravitreal bevacizumab (avastin) for the management of branch and hemiretinal vein occlusion.  Retina. 2009;  29 913-925
  • 106 Gutierrez J C, Barquet L A, Caminal J M et al. Intravitreal bevacizumab (Avastin) in the treatment of macular edema secondary to retinal vein occlusion.  Clin Ophthalmol. 2008;  2 787-791
  • 107 Iturralde D, Spaide R F, Meyerle C B et al. Intravitreal bevacizumab (Avastin) treatment of macular edema in central retinal vein occlusion: a short-term study.  Retina. 2006;  26 279-284
  • 108 Jaissle G B, Leitritz M, Gelisken F et al. One-year results after intravitreal bevacizumab therapy for macular edema secondary to branch retinal vein occlusion.  Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. 2009;  247 27-33
  • 109 Jaissle G B, Ziemssen F, Petermeier K et al. [Bevacizumab for treatment of macular edema secondary to retinal vein occlusion]. Bevacizumab zur Therapie des sekundären Makulaödems nach venösen Gefäßverschlüssen.  Ophthalmologe. 2006;  103 471-475
  • 110 Kriechbaum K, Michels S, Prager F et al. Intravitreal Avastin for macular oedema secondary to retinal vein occlusion: a prospective study.  The British journal of ophthalmology. 2008;  92 518-522
  • 111 Rabena M D, Pieramici D J, Castellarin A A et al. Intravitreal Bevacizumab (Avastin) in the Treatment of Macular Edema Secondary to Branch Retinal Vein Occlusion.  Retina. 2007;  27 419-425
  • 112 Schaal K B, Hoh A E, Scheuerle A et al. [Bevacizumab for the treatment of macular edema secondary to retinal vein occlusion] Bevacizumab zur Therapie des Makulaödems infolge venöser retinaler Gefäßverschlüsse.  Ophthalmologe. 2007;  104 285-289
  • 113 Kreutzer T C, Alge C S, Wolf A H et al. Intravitreal bevacizumab for the treatment of macular oedema secondary to branch retinal vein occlusion.  The British journal of ophthalmology. 2008;  92 351-355
  • 114 Stahl A, Agostini H, Hansen L L et al. Bevacizumab in retinal vein occlusion-results of a prospective case series.  Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. 2007;  245 1429-1436
  • 115 Tao Y, Hou J, Jiang Y R et al. Intravitreal bevacizumab vs. triamcinolone acetonide for macular oedema due to central retinal vein occlusion.  Eye (Lond). 2010;  24(5) 810-815
  • 116 Wu L, Arevalo J F, Roca J A et al. Comparison of two doses of intravitreal bevacizumab (Avastin) for treatment of macular edema secondary to branch retinal vein occlusion: results from the Pan-American Collaborative Retina Study Group at 6 months of follow-up.  Retina. 2008;  28 212-219
  • 117 Abegg M, Tappeiner C, Wolf-Schnurrbusch U et al. Treatment of branch retinal vein occlusion induced macular edema with bevacizumab.  BMC Ophthalmol. 2008;  8 18
  • 118 Ach T, Hoeh A E, Schaal K B et al. Predictive factors for changes in macular edema in intravitreal bevacizumab therapy of retinal vein occlusion.  Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. 2009;  248(2) 155-159
  • 119 Ahmadi A A, Chuo J Y, Banashkevich A et al. The effects of intravitreal bevacizumab on patients with macular edema secondary to branch retinal vein occlusion.  Canadian journal of ophthalmology. 2009;  44 154-159
  • 120 Ahmadieh H, Moradian S, Malihi M. Rapid regression of extensive retinovitreal neovascularization secondary to branch retinal vein occlusion after a single intravitreal injection of bevacizumab.  Int Ophthalmol. 2005;  26 191-193
  • 121 Algvere P V, Wendt von G, Gudmundsson J et al. Visual improvement in central retinal vein occlusion (CRVO) following intravitreal injections of bevacizumab (Avastin).  Acta Ophthalmol. 2009;  ; online
  • 122 Chalam K V, Keshavamurthy R, Brar V S. Spectral domain OCT documented resolution of recalcitrant macular edema after intravitreal bevacizumab in branch retinal vein occlusion.  European journal of ophthalmology. 2008;  18 831-833
  • 123 Chung E J, Hong Y T, Lee S C et al. Prognostic factors for visual outcome after intravitreal bevacizumab for macular edema due to branch retinal vein occlusion.  Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. 2008;  246 1241-1247
  • 124 Costa R A, Jorge R, Calucci D et al. Intravitreal Bevacizumab (Avastin) for central and hemicentral retinal vein occlusions: IBeVO Study.  Retina. 2007;  27 141-149
  • 125 Fish G E. Intravitreous bevacizumab in the treatment of macular edema from branch retinal vein occlusion and hemisphere retinal vein occlusion (an AOS thesis).  Transactions of the American Ophthalmological Society. 2008;  106 276-300
  • 126 Funk M, Kriechbaum K, Prager F et al. Intraocular concentrations of growth factors and cytokines in retinal vein occlusion and the effect of therapy with bevacizumab.  Investigative ophthalmology & visual science. 2009;  50 1025-1032
  • 127 Hoeh A E, Ach T, Schaal K B et al. Long-term follow-up of OCT-guided bevacizumab treatment of macular edema due to retinal vein occlusion.  Graefe’s archive for clinical and experimental ophthalmology = Albrecht von Graefes Archiv für klinische und experimentelle Ophthalmologie. 2009;  247 1635-1641
  • 128 Kondo M, Kondo N, Ito Y et al. Intravitreal injection of bevacizumab for macular edema secondary to branch retinal vein occlusion: results after 12 months and multiple regression analysis.  Retina. 2009;  29 1242-1248
  • 129 Matsumoto Y, Freund K B, Peiretti E et al. Rebound macular edema following bevacizumab (avastin) therapy for retinal venous occlusive disease.  Retina. 2007;  27 426-431
  • 130 Pai S A, Shetty R, Vijayan P B et al. Clinical, anatomic, and electrophysiologic evaluation following intravitreal bevacizumab for macular edema in retinal vein occlusion.  American journal of ophthalmology. 2007;  143 601-606
  • 131 Pournaras J A, Nguyen C, Vaudaux J D et al. Treatment of central retinal vein occlusion-related macular edema with intravitreal bevacizumab (avastin[r]): preliminary results.  Klin Monatsbl für Augenheilkd. 2008;  225 397-400
  • 132 Rensch F, Jonas J B, Spandau U H. Early intravitreal bevacizumab for non-ischaemic central retinal vein occlusion.  Acta Ophthalmol. 2009;  87(1) 77-81
  • 133 Rosenfeld P J, Fung A E, Puliafito C A. Optical coherence tomography findings after an intravitreal injection of bevacizumab (avastin) for macular edema from central retinal vein occlusion.  Ophthalmic Surg Lasers Imaging. 2005;  36 336-339
  • 134 Russo V, Barone A, Conte E et al. Bevacizumab Compared with Macular Laser Grid Photocoagulation for Cystoid Macular Edema in Branch Retinal Vein Occlusion.  Retina. 2009;  29(4) 511-515
  • 135 Spandau U, Wickenhauser A, Rensch F et al. Intravitreal bevacizumab for branch retinal vein occlusion.  Acta ophthalmologica Scandinavica. 2007;  85 118-119
  • 136 Scott I U, Oden N L, Vanveldhuisen P C et al. Standard Care vs Corticosteroid in Retinal Vein Occlusion Study Report 7: Incidence of Intravitreal Silicone Oil Droplets Associated With Staked-on vs. Luer Cone Syringe Design.  American journal of ophthalmology. 2009;  148(5) 725-732 e7
  • 137 Chu Y K, Chung E J, Kwon O W et al. Objective evaluation of cataract progression associated with a high dose intravitreal triamcinolone injection.  Eye. 2008;  22 895-899
  • 138 Beck R W, Edwards A R, Aiello L P et al. Three-year follow-up of a randomized trial comparing focal/grid photocoagulation and intravitreal triamcinolone for diabetic macular edema.  Archives of ophthalmology. 2009;  127 245-251
  • 139 Bashshur Z F, Ma’luf R N, Allam S et al. Intravitreal triamcinolone for the management of macular edema due to nonischemic central retinal vein occlusion.  Archives of ophthalmology. 2004;  122 1137-1140
  • 140 Ladas I D, Karagiannis D A, Rouvas A A et al. Safety of repeat intravitreal injections of bevacizumab versus ranibizumab: our experience after 2,000 injections.  Retina. 2009;  29 313-318
  • 141 Bakri S J, Ekdawi N S. Intravitreal silicone oil droplets after intravitreal drug injections.  Retina. 2008;  28 996-1001
  • 142 Georgopoulos M, Polak K, Prager F et al. Characteristics of severe intraocular inflammation following intravitreal injection of bevacizumab (Avastin).  The British journal of ophthalmology. 2009;  93 457-462
  • 143 Kocabora M S, Ozbilen K T, Serefoglu K. Intravitreal silicone oil droplets following pegaptanib injection.  Acta Ophthalmol. 2010;  88 e44-e45
  • 144 Ness T, Feltgen N, Agostini H et al. Toxic vitreitis outbreak after intravitreal injection.  Retina. 2010;  30 332-338
  • 145 Sato T, Emi K, Ikeda T et al. Severe intraocular inflammation after intravitreal injection of bevacizumab.  Ophthalmology. 2010;  117(3) 512-516, 516 e1–2
  • 146 Yamashiro K, Tsujikawa A, Miyamoto K et al. Sterile endophthalmitis after intravitreal injection of bevacizumab obtained from a single batch.  Retina. 2010;  30 485-490
  • 147 Yenerel N M, Dinc U A, Gorgun E. A case of sterile endophthalmitis after repeated intravitreal bevacizumab injection.  J Ocul Pharmacol Ther. 2008;  24 362-363
  • 148 Regillo C D, Brown D M, Abraham P et al. Randomized, double-masked, sham-controlled trial of ranibizumab for neovascular age-related macular degeneration: PIER Study year 1.  American journal of ophthalmology. 2008;  145 239-248
  • 149 Brown D M, Michels M, Kaiser P K et al. Ranibizumab versus verteporfin photodynamic therapy for neovascular age-related macular degeneration: Two-year results of the ANCHOR study.  Ophthalmology. 2009;  116 57-65 e55
  • 150 Brown D M, Kaiser P K, Michels M et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration.  The New England journal of medicine. 2006;  355 1432-1444
  • 151 Rosenfeld P J, Brown D M, Heier J S et al. Ranibizumab for neovascular age-related macular degeneration.  The New England journal of medicine. 2006;  355 1419-1431
  • 152 Chung Y R, Lee K, Cho E H et al. Blood pressure changes after intravitreal bevacizumab in patients grouped by ocular pathology.  Eye. 2010;  ; online
  • 153 Sakamoto A, Tsujikawa A, Ota M et al. Evaluation of potential visual acuity in eyes with macular oedema secondary to retinal vein occlusion.  Clin Experiment Ophthalmol. 2009;  37 208-216
  • 154 Bates D O, Cui T G, Doughty J M et al. VEGF165b, an inhibitory splice variant of vascular endothelial growth factor, is down-regulated in renal cell carcinoma.  Cancer Res. 2002;  62 4123-4131
  • 155 Woolard J, Wang W Y, Bevan H S et al. VEGF165b, an inhibitory vascular endothelial growth factor splice variant: mechanism of action, in vivo effect on angiogenesis and endogenous protein expression.  Cancer Res. 2004;  64 7822-7835
  • 156 Perrin R M, Konopatskaya O, Qiu Y et al. Diabetic retinopathy is associated with a switch in splicing from anti- to pro-angiogenic isoforms of vascular endothelial growth factor.  Diabetologia. 2005;  48 2422-2427
  • 157 Magnussen A L, Rennel E S, Hua J et al. VEGF-A165b is cytoprotective and anti-angiogenic in the retina.  Investigative ophthalmology & visual science. 2010;  ; online

PD Dr. Nicolas Feltgen

Augenklinik, Universitäts-Klinikum

Robert-Koch-Straße 40

37075 Göttingen

Telefon: ++ 49/05 51/39 61 43

Fax: ++ 49/5 51/39 67 87

eMail: nicolas.feltgen@med.uni-goettingen.de

    >