Planta Med 2014; 80(14): 1210-1226
DOI: 10.1055/s-0033-1360273
Reviews
Georg Thieme Verlag KG Stuttgart · New York

Methods Applied to the In Vitro Primary Toxicology Testing of Natural Products: State of the Art, Strengths, and Limits

Valérian Bunel
1   Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Department of Biopharmacy, Université Libre de Bruxelles (ULB), Brussels, Belgium
,
Moustapha Ouedraogo
2   Laboratory of Pharmacology and Toxicology, Health Sciences Faculty, University of Ouagadougou, Ouagadougou, Burkina Faso
,
Anh Tho Nguyen
1   Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Department of Biopharmacy, Université Libre de Bruxelles (ULB), Brussels, Belgium
,
Caroline Stévigny
1   Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Department of Biopharmacy, Université Libre de Bruxelles (ULB), Brussels, Belgium
,
Pierre Duez
1   Laboratory of Pharmacognosy, Bromatology and Human Nutrition, Department of Biopharmacy, Université Libre de Bruxelles (ULB), Brussels, Belgium
3   Laboratory of Therapeutical Chemistry and Pharmacognosy, Université de Mons (UMONS), Mons, Belgium
› Author Affiliations
Further Information

Publication History

received 20 August 2013
revised 10 December 2013

accepted 11 December 2013

Publication Date:
15 January 2014 (online)

Abstract

The present review attempts to build up a comprehensive picture of the major primary techniques used to screen and assess the cytotoxicity of plant complex mixtures. These can be based on metabolic activity, on membrane integrity, on morphological features, on cell growth; the type of cell death can also be established from more or less specific events (e.g., apoptosis, autophagy, DNA damage detection, reactive oxygen species involvement). This review will discuss the benefits, the difficulties, and the challenges that may occur along cytotoxicity testing of raw extracts and isolated natural compounds.

 
  • References

  • 1 Cragg GM, Boyd MR, Cardellina II JH, Newman DJ, Snader KM, Cloud TG. Ethnobotany and drug discovery: the experience of the US National Cancer Institute. In: Chadwick DJ, Marsh J, editors Ethnobotany and the search for new drugs. Chichester: Wiley; 1994: 178-196
  • 2 Evans D, Evans W, Trease G. Pharmacognosy, 16th edition. Amsterdam: Saunders Ltd.; 2009
  • 3 Nguyen AT, Duez P. Cytotoxic-anticancer drugs from medicinal plants. In: Matsumoto T, editor Phytochemistry research progress. New York: Nova Science Publishers, Inc.; 2008: 193-208
  • 4 Verpoorte R, Houghton PJ, Heinrich M, Mukherjee PK, Hirschmann GS, van Staden J, Yesilada E. Editorial. J Ethnopharmacol 2006; 103: 309-310
  • 5 Shaw D, Ladds G, Duez P, Williamson E, Chan K. Pharmacovigilance of herbal medicine. J Ethnopharmacol 2012; 140: 513-518
  • 6 Zhang L, Yan J, Liu X, Ye Z, Yang X, Meyboom R, Chan K, Shaw D, Duez P. Pharmacovigilance practice and risk control of Traditional Chinese Medicine drugs in China: current status and future perspective. J Ethnopharmacol 2012; 140: 519-525
  • 7 Biringanine G, Vray B, Vercruysse V, Vanhaelen-Fastre R, Vanhaelen M, Duez P. Polysaccharides extracted from the leaves of Plantago palmata Hook.f. induce nitric oxide and tumor necrosis factor-alpha production by interferon-gamma-activated macrophages. Nitr Oxide 2005; 12: 1-8
  • 8 Santos NC, Figueira-Coelho J, Martins-Silva J, Saldanha C. Multidisciplinary utilization of dimethyl sulfoxide: pharmacological, cellular, and molecular aspects. Biochem Pharmacol 2003; 65: 1035-1041
  • 9 Ponzio G, Loubat A, Rochet N, Turchi L, Rezzonico R, Farahi Far D, Dulic V, Rossi B. Early G1 growth arrest of hybridoma B cells by DMSO involves cyclin D2 inhibition and p 21[CIP1] induction. Oncogene 1998; 17: 1159-1166
  • 10 Julien C, Marcouiller F, Bretteville A, El Khoury NB, Baillargeon J, Hebert SS, Planel E. Dimethyl sulfoxide induces both direct and indirect tau hyperphosphorylation. PLoS One 2012; 7: e40020
  • 11 David RM, Jones HS, Panter GH, Winter MJ, Hutchinson TH, Kevin Chipman J. Interference with xenobiotic metabolic activity by the commonly used vehicle solvents dimethylsulfoxide and methanol in zebrafish (Danio rerio) larvae but not Daphnia magna . Chemosphere 2012; 88: 912-917
  • 12 Da Violante G, Zerrouk N, Richard I, Provot G, Chaumeil JC, Arnaud P. Evaluation of the cytotoxicity effect of dimethyl sulfoxide (DMSO) on Caco2/TC7 colon tumor cell cultures. Biol Pharm Bull 2002; 25: 1600-1603
  • 13 Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H, Miyamae Y, Rojas E, Ryu JC, Sasaki YF. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Environ Mol Mutagen 2000; 35: 206-221
  • 14 Charles C, Chemais M, Stevigny C, Dubois J, Nachergael A, Duez P. Measurement of the influence of flavonoids on DNA repair kinetics using the comet assay. Food Chem 2012; 135: 2974-2981
  • 15 Galluzzi L, Vitale I, Abrams JM, Alnemri ES, Baehrecke EH, Blagosklonny MV, Dawson TM, Dawson VL, El-Deiry WS, Fulda S, Gottlieb E, Green DR, Hengartner MO, Kepp O, Knight RA, Kumar S, Lipton SA, Lu X, Madeo F, Malorni W, Mehlen P, Nunez G, Peter ME, Piacentini M, Rubinsztein DC, Shi Y, Simon HU, Vandenabeele P, White E, Yuan J, Zhivotovsky B, Melino G, Kroemer G. Molecular definitions of cell death subroutines: recommendations of the Nomenclature Committee on Cell Death 2012. Cell Death Differ 2012; 19: 107-120
  • 16 Kroemer G, Galluzzi L, Vandenabeele P, Abrams J, Alnemri ES, Baehrecke EH, Blagosklonny MV, El-Deiry WS, Golstein P, Green DR, Hengartner M, Knight RA, Kumar S, Lipton SA, Malorni W, Nunez G, Peter ME, Tschopp J, Yuan J, Piacentini M, Zhivotovsky B, Melino G. Classification of cell death: recommendations of the Nomenclature Committee on Cell Death 2009. Cell Death Differ 2009; 16: 3-11
  • 17 Majno G, Joris I. Apoptosis, oncosis, and necrosis. An overview of cell death. Am J Pathol 1995; 146: 3-15
  • 18 Schwartzman RA, Cidlowski JA. Apoptosis: the biochemistry and molecular biology of programmed cell death. Endocr Rev 1993; 14: 133-151
  • 19 Hotchkiss RS, Strasser A, McDunn JE, Swanson PE. Cell death. N Engl J Med 2009; 361: 1570-1583
  • 20 Krysko DV, Vanden Berghe T, DʼHerde K, Vandenabeele P. Apoptosis and necrosis: detection, discrimination and phagocytosis. Methods 2008; 44: 205-221
  • 21 Proskuryakov SY, Konoplyannikov AG, Gabai VL. Necrosis: a specific form of programmed cell death?. Exp Cell Res 2003; 283: 1-16
  • 22 Zhivotovsky B. Apoptosis, necrosis and between. Cell Cycle 2004; 3: 64-66
  • 23 Elmore S. Apoptosis: a review of programmed cell death. Toxicol Pathol 2007; 35: 495-516
  • 24 Ward TH, Cummings J, Dean E, Greystoke A, Hou JM, Backen A, Ranson M, Dive C. Biomarkers of apoptosis. Br J Cancer 2008; 99: 841-846
  • 25 Kiechle FL, Zhang X. Apoptosis: biochemical aspects and clinical implications. Clin Chim Acta 2002; 326: 27-45
  • 26 Shen HM, Codogno P. Autophagy is a survival force via suppression of necrotic cell death. Exp Cell Res 2012; 318: 1304-1308
  • 27 Korsnes MS, Espenes A, Hetland DL, Hermansen LC. Paraptosis-like cell death induced by yessotoxin. Toxicol In Vitro 2011; 25: 1764-1770
  • 28 Sperandio S, de Belle I, Bredesen DE. An alternative, nonapoptotic form of programmed cell death. Proc Natl Acad Sci USA 2000; 97: 14376-14381
  • 29 Sperandio S, Poksay K, de Belle I, Lafuente MJ, Liu B, Nasir J, Bredesen DE. Paraptosis: mediation by MAP kinases and inhibition by AIP-1/Alix. Cell Death Differ 2004; 11: 1066-1075
  • 30 Yoon MJ, Kim EH, Kwon TK, Park SA, Choi KS. Simultaneous mitochondrial Ca(2+) overload and proteasomal inhibition are responsible for the induction of paraptosis in malignant breast cancer cells. Cancer Lett 2012; 324: 197-209
  • 31 Fink SL, Cookson BT. Apoptosis, pyroptosis, and necrosis: mechanistic description of dead and dying eukaryotic cells. Infect Immun 2005; 73: 1907-1916
  • 32 Slater TF, Sawyer B, Straeuli U. Studies on succinate-tetrazolium reductase systems. III. Points of coupling of four different tetrazolium salts. Biochim Biophys Acta 1963; 77: 383-393
  • 33 Mosmann T. Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983; 65: 55-63
  • 34 Berridge MV, Tan AS. Characterization of the cellular reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT): subcellular localization, substrate dependence, and involvement of mitochondrial electron transport in MTT reduction. Arch Biochem Biophys 1993; 303: 474-482
  • 35 Berridge MV, Herst PM, Tan AS. Tetrazolium dyes as tools in cell biology: new insights into their cellular reduction. Biotechnol Annu Rev 2005; 11: 127-152
  • 36 Scudiero DA, Shoemaker RH, Paull KD, Monks A, Tierney S, Nofziger TH, Currens MJ, Seniff D, Boyd MR. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res 1988; 48: 4827-4833
  • 37 Goodwin CJ, Holt SJ, Downes S, Marshall NJ. Microculture tetrazolium assays: a comparison between two new tetrazolium salts, XTT and MTS. J Immunol Methods 1995; 179: 95-103
  • 38 Shoemaker M, Cohen I, Campbell M. Reduction of MTT by aqueous herbal extracts in the absence of cells. J Ethnopharmacol 2004; 93: 381-384
  • 39 Bruggisser R, von Daeniken K, Jundt G, Schaffner W, Tullberg-Reinert H. Interference of plant extracts, phytoestrogens and antioxidants with the MTT tetrazolium assay. Planta Med 2002; 68: 445-448
  • 40 Wisman KN, Perkins AA, Jeffers MD, Hagerman AE. Accurate assessment of the bioactivities of redox-active polyphenolics in cell culture. J Agric Food Chem 2008; 56: 7831-7837
  • 41 Wang P, Henning SM, Heber D. Limitations of MTT and MTS-based assays for measurement of antiproliferative activity of green tea polyphenols. PLoS One 2010; 5: e10202
  • 42 Muraina IA, Suleiman MM, Eloff JN. Can MTT be used to quantify the antioxidant activity of plant extracts?. Phytomedicine 2009; 16: 665-668
  • 43 Pagliacci MC, Spinozzi F, Migliorati G, Fumi G, Smacchia M, Grignani F, Riccardi C, Nicoletti I. Genistein inhibits tumour cell growth in vitro but enhances mitochondrial reduction of tetrazolium salts: a further pitfall in the use of the MTT assay for evaluating cell growth and survival. Eur J Cancer 1993; 29?A: 1573-1577
  • 44 Naoi T, Shibuya N, Inoue H, Mita S, Kobayashi S, Watanabe K, Orino K. The effect of tert-butylhydroquinone-induced oxidative stress in MDBK cells using XTT assay: implication of tert-butylhydroquinone-induced NADPH generating enzymes. J Vet Med Sci 2010; 72: 321-326
  • 45 Hamid R, Rotshteyn Y, Rabadi L, Parikh R, Bullock P. Comparison of alamar blue and MTT assays for high through-put screening. Toxicol In Vitro 2004; 18: 703-710
  • 46 Thorne N, Auld DS, Inglese J. Apparent activity in high-throughput screening: origins of compound-dependent assay interference. Curr Opin Chem Biol 2010; 14: 315-324
  • 47 Yu HG, Chung H, Yu YS, Seo JM, Heo JW. A new rapid and non-radioactive assay for monitoring and determining the proliferation of retinal pigment epithelial cells. Korean J Ophthalmol 2003; 17: 29-34
  • 48 Zhi-Jun Y, Sriranganathan N, Vaught T, Arastu SK, Ansar Ahmed S. A dye-based lymphocyte proliferation assay that permits multiple immunological analyses: mRNA, cytogenetic, apoptosis, and immunophenotyping studies. J Immunol Methods 1997; 210: 25-39
  • 49 Erikstein BS, Hagland HR, Nikolaisen J, Kulawiec M, Singh KK, Gjertsen BT, Tronstad KJ. Cellular stress induced by resazurin leads to autophagy and cell death via production of reactive oxygen species and mitochondrial impairment. J Cell Biochem 2010; 111: 574-584
  • 50 Goegan P, Johnson G, Vincent R. Effects of serum protein and colloid on the alamarBlue assay in cell cultures. Toxicol In Vitro 1995; 9: 257-266
  • 51 Repetto G, del Peso A, Zurita JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Protoc 2008; 3: 1125-1131
  • 52 Borenfreund E, Puerner JA. Toxicity determined in vitro by morphological alterations and neutral red absorption. Toxicol Lett 1985; 24: 119-124
  • 53 Hall JO, Novakofski JE, Beasley VR. Neutral red assay modification to prevent cytotoxicity and improve reproducibility using E-63 rat skeletal muscle cells. Biotechnol Histochem 1998; 73: 211-221
  • 54 Higashi T, Isomoto A, Tyuma I, Kakishita E, Uomoto M, Nagai K. Quantitative and continuous analysis of ATP release from blood platelets with firefly luciferase luminescence. Thromb Haemost 1985; 53: 65-69
  • 55 Crouch SP, Kozlowski R, Slater KJ, Fletcher J. The use of ATP bioluminescence as a measure of cell proliferation and cytotoxicity. J Immunol Methods 1993; 160: 81-88
  • 56 Squatrito RC, Connor JP, Buller RE. Comparison of a novel redox dye cell growth assay to the ATP bioluminescence assay. Gynecol Oncol 1995; 58: 101-105
  • 57 Fan F, Wood KV. Bioluminescent assays for high-throughput screening. Assay Drug Dev Technol 2007; 5: 127-136
  • 58 Ulukaya E, Ozdikicioglu F, Oral AY, Demirci M. The MTT assay yields a relatively lower result of growth inhibition than the ATP assay depending on the chemotherapeutic drugs tested. Toxicol In Vitro 2008; 22: 232-239
  • 59 Thorne N, Inglese J, Auld DS. Illuminating insights into firefly luciferase and other bioluminescent reporters used in chemical biology. Chem Biol 2010; 17: 646-657
  • 60 Bakhtiarova A, Taslimi P, Elliman SJ, Kosinski PA, Hubbard B, Kavana M, Kemp DM. Resveratrol inhibits firefly luciferase. Biochem Biophys Res Commun 2006; 351: 481-484
  • 61 Leitao JM, Esteves da Silva JC. Firefly luciferase inhibition. J Photochem Photobiol B 2010; 101: 1-8
  • 62 Shimomura Y, Kawada T, Suzuki M. Capsaicin and its analogs inhibit the activity of NADH-coenzyme Q oxidoreductase of the mitochondrial respiratory chain. Arch Biochem Biophys 1989; 270: 573-577
  • 63 Cheng SC, Pardini RS. Structure-inhibition relationships of various phenolic compounds towards mitochondrial respiration. Pharmacol Res Commun 1978; 10: 897-910
  • 64 Gledhill JR, Montgomery MG, Leslie AGW, Walker JE. Mechanism of inhibition of bovine F1-ATPase by resveratrol and related polyphenols. Proc Natl Acad Sci USA 2007; 104: 13632-13637
  • 65 Chan GK, Kleinheinz TL, Peterson D, Moffat JG. A simple high-content cell cycle assay reveals frequent discrepancies between cell number and ATP and MTS proliferation assays. PLoS One 2013; 8: e63583
  • 66 Kitami T, Logan DJ, Negri J, Hasaka T, Tolliday NJ, Carpenter AE, Spiegelman BM, Mootha VK. A chemical screen probing the relationship between mitochondrial content and cell size. PLoS One 2012; 7: e33755
  • 67 Kluza J, Marchetti P, Gallego MA, Lancel S, Fournier C, Loyens A, Beauvillain JC, Bailly C. Mitochondrial proliferation during apoptosis induced by anticancer agents: effects of doxorubicin and mitoxantrone on cancer and cardiac cells. Oncogene 2004; 23: 7018-7030
  • 68 Renner K, Amberger A, Konwalinka G, Kofler R, Gnaiger E. Changes of mitochondrial respiration, mitochondrial content and cell size after induction of apoptosis in leukemia cells. Biochim Biophys Acta 2003; 1642: 115-123
  • 69 Abe K, Matsuki N. Measurement of cellular 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction activity and lactate dehydrogenase release using MTT. Neurosci Res 2000; 38: 325-329
  • 70 Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J Immunol Methods 1983; 64: 313-320
  • 71 Weyermann J, Lochmann D, Zimmer A. A practical note on the use of cytotoxicity assays. Int J Pharm 2005; 288: 369-376
  • 72 Schofield P, Mbugua DM, Pell AN. Analysis of condensed tannins: a review. Anim Feed Sci Technol 2001; 91: 21-40
  • 73 Bruneton J. Pharmacognosie : Phytochimie, Plantes médicinales, 4th edition. Paris: Lavoisier; 2009
  • 74 Goldstein JL, Swain T. The inhibition of enzymes by tannins. Phytochemistry 1965; 4: 185-192
  • 75 Kendig DM, Tarloff JB. Inactivation of lactate dehydrogenase by several chemicals: implications for in vitro toxicology studies. Toxicol In Vitro 2007; 21: 125-132
  • 76 Bottger S, Hofmann K, Melzig MF. Saponins can perturb biologic membranes and reduce the surface tension of aqueous solutions: a correlation?. Bioorg Med Chem 2012; 20: 2822-2828
  • 77 Grankvist K, Lernmark A, Taljedal IB. Alloxan cytotoxicity in vitro. Microscope photometric analyses of Trypan Blue uptake by pancreatic islet cells in suspension. Biochem J 1977; 162: 19-24
  • 78 Uliasz TF, Hewett SJ. A microtiter trypan blue absorbance assay for the quantitative determination of excitotoxic neuronal injury in cell culture. J Neurosci Methods 2000; 100: 157-163
  • 79 Hu J, el-Fakahany EE. An artifact associated with using trypan blue exclusion to measure effects of amyloid beta on neuron viability. Life Sci 1994; 55: 1009-1016
  • 80 Johnson I, Spence M. The Molecular Probes® Handbook, 11th edition, Section 12.5. Available at http://www.lifetechnologies.com/be/en/home/references/molecular-probes-the-handbook.html Accessed December 11, 2013.
  • 81 Sonnenbichler J, Scalera F, Sonnenbichler I, Weyhenmeyer R. Stimulatory effects of silibinin and silicristin from the milk thistle Silybum marianum on kidney cells. J Pharmacol Exp Ther 1999; 290: 1375-1383
  • 82 Nunez R. DNA measurement and cell cycle analysis by flow cytometry. Curr Issues Mol Biol 2001; 3: 67-70
  • 83 Nicoletti I, Migliorati G, Pagliacci MC, Grignani F, Riccardi C. A rapid and simple method for measuring thymocyte apoptosis by propidium iodide staining and flow cytometry. J Immunol Methods 1991; 139: 271-279
  • 84 Taupin P. BrdU immunohistochemistry for studying adult neurogenesis: paradigms, pitfalls, limitations, and validation. Brain Res Rev 2007; 53: 198-214
  • 85 Munshi A, Hobbs M, Meyn R. Clonogenic cell survival assay. In: Blumenthal RD, editor Methods in molecular medicine. Totawa: Humana Press; 2005: 21-28
  • 86 Franken NA, Rodermond HM, Stap J, Haveman J, van Bree C. Clonogenic assay of cells in vitro . Nat Protoc 2006; 1: 2315-2319
  • 87 Quto b SS, Ng CE. Comparison of apoptotic, necrotic and clonogenic cell death and inhibition of cell growth following camptothecin and X-radiation treatment in a human melanoma and a human fibroblast cell line. Cancer Chemother Pharmacol 2002; 49: 167-175
  • 88 Saraste A. Morphologic criteria and detection of apoptosis. Herz 1999; 24: 189-195
  • 89 Wang C, Jiang Z, Yao J, Wu X, Sun L, Liu C, Duan W, Yan M, Liu J, Zhang L. Participation of cathepsin B in emodin-induced apoptosis in HK-2 cells. Toxicol Lett 2008; 181: 196-204
  • 90 Galluzzi L, Aaronson SA, Abrams J, Alnemri ES, Andrews DW, Baehrecke EH, Bazan NG, Blagosklonny MV, Blomgren K, Borner C, Bredesen DE, Brenner C, Castedo M, Cidlowski JA, Ciechanover A, Cohen GM, De Laurenzi V, De Maria R, Deshmukh M, Dynlacht BD, El-Deiry WS, Flavell RA, Fulda S, Garrido C, Golstein P, Gougeon ML, Green DR, Gronemeyer H, Hajnoczky G, Hardwick JM, Hengartner MO, Ichijo H, Jaattela M, Kepp O, Kimchi A, Klionsky DJ, Knight RA, Kornbluth S, Kumar S, Levine B, Lipton SA, Lugli E, Madeo F, Malomi W, Marine JC, Martin SJ, Medema JP, Mehlen P, Melino G, Moll UM, Morselli E, Nagata S, Nicholson DW, Nicotera P, Nunez G, Oren M, Penninger J, Pervaiz S, Peter ME, Piacentini M, Prehn JH, Puthalakath H, Rabinovich GA, Rizzuto R, Rodrigues CM, Rubinsztein DC, Rudel T, Scorrano L, Simon HU, Steller H, Tschopp J, Tsujimoto Y, Vandenabeele P, Vitale I, Vousden KH, Youle RJ, Yuan J, Zhivotovsky B, Kroemer G. Guidelines for the use and interpretation of assays for monitoring cell death in higher eukaryotes. Cell Death Differ 2009; 16: 1093-1107
  • 91 Bury M, Novo-Uzal E, Andolfi A, Cimini S, Wauthoz N, Heffeter P, Lallemand B, Avolio F, Delporte C, Cimmino A, Dubois J, Van Antwerpen P, Zonno MC, Vurro M, Poumay Y, Berger W, Evidente A, De Gara L, Kiss R, Locato V. Ophiobolin A, a sesterterpenoid fungal phytotoxin, displays higher in vitro growth-inhibitory effects in mammalian than in plant cells and displays in vivo antitumor activity. Int J Oncol 2013; 43: 575-585
  • 92 Nacoulma A. Reprogrammation métabolique induite dans les tissus hyperplasique formés chez le tabac infecté par Rodococcusfascians: aspects fondamentaux et applications potentielles [PhD Thesis]. Brussels: Université Libre de Bruxelles; 2013
  • 93 Debeir O, Megalizzi V, Warzee N, Kiss R, Decaestecker C. Videomicroscopic extraction of specific information on cell proliferation and migration in vitro . Exp Cell Res 2008; 314: 2985-2998
  • 94 Hu Q, Noor M, Wong YF, Hylands PJ, Simmonds MS, Xu Q, Jiang D, Hendry BM. In vitro anti-fibrotic activities of herbal compounds and herbs. Nephrol Dial Transplant 2009; 24: 3033-3041
  • 95 Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods 1995; 184: 39-51
  • 96 Verzola D, Gandolfo MT, Salvatore F, Villaggio B, Gianiorio F, Traverso P, Deferrari G, Garibotto G. Testosterone promotes apoptotic damage in human renal tubular cells. Kidney Int 2004; 65: 1252-1261
  • 97 Jacob MC, Favre M, Bensa JC. Membrane cell permeabilization with saponin and multiparametric analysis by flow cytometry. Cytometry 1991; 12: 550-558
  • 98 Wang C, Wu X, Chen M, Duan W, Sun L, Yan M, Zhang L. Emodin induces apoptosis through caspase 3-dependent pathway in HK-2 cells. Toxicology 2007; 231: 120-128
  • 99 Fan C, Wang W, Zhao B, Zhang S, Miao J. Chloroquine inhibits cell growth and induces cell death in A549 lung cancer cells. Bioorg Med Chem 2006; 14: 3218-3222
  • 100 Li B. Chaine respiratoire et pore de transition de permeabilité mitochondriale dans la cardioprotection [PhD Thesis]. Lyon: Université Claude Bernard; 2009
  • 101 Zhu B, Zhai Q, Yu B. Tanshinone IIA protects rat primary hepatocytes against carbon tetrachloride toxicity via inhibiting mitochondria permeability transition. Pharm Biol 2010; 48: 484-487
  • 102 Baumann S, Fas SC, Giaisi M, Muller WW, Merling A, Gulow K, Edler L, Krammer PH, Li-Weber M. Wogonin preferentially kills malignant lymphocytes and suppresses T-cell tumor growth by inducing PLCgamma1- and Ca2+-dependent apoptosis. Blood 2008; 111: 2354-2363
  • 103 Singh NP, McCoy MT, Tice RR, Schneider EL. A simple technique for quantitation of low levels of DNA damage in individual cells. Exp Cell Res 1988; 175: 184-191
  • 104 Fairbairn DW, Olive PL, OʼNeill KL. The comet assay: a comprehensive review. Mutat Res 1995; 339: 37-59
  • 105 Anderson D, Yu TW, McGregor DB. Comet assay responses as indicators of carcinogen exposure. Mutagenesis 1998; 13: 539-555
  • 106 Rojas E, Lopez MC, Valverde M. Single cell gel electrophoresis assay: methodology and applications. J Chromatogr B Biomed Sci Appl 1999; 722: 225-254
  • 107 Hartmann A, Speit G. The contribution of cytotoxicity to DNA-effects in the single cell gel test (comet assay). Toxicol Lett 1997; 90: 183-188
  • 108 Horvathova E, Dusinska M, Shaposhnikov S, Collins AR. DNA damage and repair measured in different genomic regions using the comet assay with fluorescent in situ hybridization. Mutagenesis 2004; 19: 269-276
  • 109 Gedik CM, Ewen SW, Collins AR. Single-cell gel electrophoresis applied to the analysis of UV-C damage and its repair in human cells. Int J Radiat Biol 1992; 62: 313-320
  • 110 Olive PL. DNA damage and repair in individual cells: applications of the comet assay in radiobiology. Int J Radiat Biol 1999; 75: 395-405
  • 111 Bocker W, Bauch T, Muller WU, Streffer C. Image analysis of comet assay measurements. Int J Radiat Biol 1997; 72: 449-460
  • 112 Olive PL, Banath JP, Durand RE. Heterogeneity in radiation induced DNA damage and repair in tumor and normal cells measured using the ʼcometʼ assay. Radiat Res 1990; 122: 86-94
  • 113 Speit G, Vasquez M, Hartmann A. The comet assay as an indicator test for germ cell genotoxicity. Mutat Res 2009; 681: 3-12
  • 114 Berthelot-Ricou A, Perrin J, Di Giorgio C, De Meo M, Botta A, Courbiere B. Comet assay on mouse oocytes: an improved technique to evaluate genotoxic risk on female germ cells. Fertil Steril 2011; 95: 1452-1457
  • 115 Duez P, Dehon G, Kumps A, Dubois J. Statistics of the Comet assay: a key to discriminate between genotoxic effects. Mutagenesis 2003; 18: 159-166
  • 116 Speit G, Brendler-Schwaab S, Hartmann A, Pfuhler S. The in vivo comet assay: use and status in genotoxicity testing. Mutagenesis 2005; 20: 245-254
  • 117 Kim YJ, Park HJ, Yoon SH, Kim MJ, Leem KH, Chung JH, Kim HK. Anticancer effects of oligomeric proanthocyanidins on human colorectal cancer cell line, SNU-C4. World J Gastroenterol 2005; 11: 4674-4678
  • 118 Martins C, Doran C, Laires A, Rueff J, Rodrigues AS. Genotoxic and apoptotic activities of the food flavourings myristicin and eugenol in AA8 and XRCC1 deficient EM9 cells. Food Chem Toxicol 2011; 49: 385-392
  • 119 Heatwole VM. TUNEL assay for apoptotic cells. Methods Mol Biol 1999; 115: 141-148
  • 120 Stahelin BJ, Marti U, Solioz M, Zimmermann H, Reichen J. False positive staining in the TUNEL assay to detect apoptosis in liver and intestine is caused by endogenous nucleases and inhibited by diethyl pyrocarbonate. Mol Pathol 1998; 51: 204-208
  • 121 Bonner WM, Redon CE, Dickey JS, Nakamura AJ, Sedelnikova OA, Solier S, Pommier Y. GammaH2AX and cancer. Nat Rev Cancer 2008; 8: 957-967
  • 122 Muslimovic A, Ismail IH, Gao Y, Hammarsten O. An optimized method for measurement of gamma-H2AX in blood mononuclear and cultured cells. Nat Protoc 2008; 3: 1187-1193
  • 123 Smart DJ, Ahmedi KP, Harvey JS, Lynch AM. Genotoxicity screening via the gammaH2AX by flow assay. Mutat Res 2011; 715: 25-31
  • 124 Verschaeve L, Juutilainen J, Lagroye I, Miyakoshi J, Saunders R, de Seze R, Tenforde T, van Rongen E, Veyret B, Xu Z. In vitro and in vivo genotoxicity of radiofrequency fields. Mutat Res 2010; 705: 252-268
  • 125 Sedelnikova OA, Rogakou EP, Panyutin IG, Bonner WM. Quantitative detection of (125)IdU-induced DNA double-strand breaks with gamma-H2AX antibody. Radiat Res 2002; 158: 486-492
  • 126 Bouquet F, Muller C, Salles B. The loss of gamma H2AX signal is a marker of DNA double strand breaks repair only a low levels of DNA damage. Cell Cycle 2006; 5: 1116-1122
  • 127 Maron DM, Ames BN. Revised methods for the Salmonella mutagenicity test. Mutat Res 1983; 113: 173-215
  • 128 Ramos A, Edreira A, Vizoso A, Betancourt J, Lopez M, Decalo M. Genotoxicity of an extract of Calendula officinalis L. J Ethnopharmacol 1998; 61: 49-55
  • 129 Zhang H, Cifone MA, Murli H, Erexson GL, Mecchi MS, Lawlor TE. Application of simplified in vitro screening tests to detect genotoxicity of aristolochic acid. Food Chem Toxicol 2004; 42: 2021-2028
  • 130 Ogura R, Ikeda N, Yuki K, Morita O, Saigo K, Blackstock C, Nishiyama N, Kasamatsu T. Genotoxicity studies on green tea catechin. Food Chem Toxicol 2008; 46: 2190-2200
  • 131 EMEA. Overview of comments received on draft ʼguideline on the assessment of genotoxic constituents in herbal Substances/preparationsʼ (emea/hmpc/107079/2007). Available at: http://www.ema.europa.eu/docs/en_GB/document_library/Other/2009/09/WC500003570.pdf Accessed August 2013.
  • 132 Bolognesi C. Genotoxicity of pesticides: a review of human biomonitoring studies. Mutat Res 2003; 543: 251-272
  • 133 Fenech M. The in vitro micronucleus technique. Mutat Res 2000; 455: 81-95
  • 134 Kirsch-Volders M, Sofuni T, Aardema M, Albertini S, Eastmond D, Fenech M, Ishidate jr. M, Kirchner S, Lorge E, Morita T, Norppa H, Surralles J, Vanhauwaert A, Wakata A. Report from the in vitro micronucleus assay working group. Mutat Res 2003; 540: 153-163
  • 135 OECD. OECD guideline for the testing of chemicals: mammalian erythrocyte micronucleus test. Chemical safety and biosafety 1997; Testing of chemicals. Available at http://www.oecd.org/chemicalsafety/testing/oecdguidelinesforthetestingofchemicals.htm Accessed December 11, 2013.
  • 136 Westerink WM, Schirris TJ, Horbach GJ, Schoonen WG. Development and validation of a high-content screening in vitro micronucleus assay in CHO-k1 and HepG2 cells. Mutat Res 2011; 724: 7-21
  • 137 Lambert IB, Singer TM, Boucher SE, Douglas GR. Detailed review of transgenic rodent mutation assays. Mutat Res 2005; 590: 1-280
  • 138 Bakkali F, Averbeck S, Averbeck D, Idaomar M. Biological effects of essential oils – a review. Food Chem Toxicol 2008; 46: 446-475
  • 139 Droge W. Free radicals in the physiological control of cell function. Physiol Rev 2002; 82: 47-95
  • 140 Zhao BL, Li XJ, He RG, Cheng SJ, Xin WJ. Scavenging effect of extracts of green tea and natural antioxidants on active oxygen radicals. Cell Biophys 1989; 14: 175-185
  • 141 Abenavoli L, Capasso R, Milic N, Capasso F. Milk thistle in liver diseases: past, present, future. Phytother Res 2010; 24: 1423-1432
  • 142 Paya M, Halliwell B, Hoult JR. Interactions of a series of coumarins with reactive oxygen species. Scavenging of superoxide, hypochlorous acid and hydroxyl radicals. Biochem Pharmacol 1992; 44: 205-214
  • 143 Carr A, Frei B. Does vitamin C act as a pro-oxidant under physiological conditions?. FASEB J 1999; 13: 1007-1024
  • 144 Lapidot T, Walker MD, Kanner J. Can apple antioxidants inhibit tumor cell proliferation? Generation of H(2)O(2) during interaction of phenolic compounds with cell culture media. J Agric Food Chem 2002; 50: 3156-3160
  • 145 OʼBrien PJ. Molecular mechanisms of quinone cytotoxicity. Chem Biol Interact 1991; 80: 1-41
  • 146 Brisson M, Nguyen T, Wipf P, Joo B, Day BW, Skoko JS, Schreiber EM, Foster C, Bansal P, Lazo JS. Redox regulation of Cdc25B by cell-active quinolinediones. Mol Pharmacol 2005; 68: 1810-1820
  • 147 Vasquez DR, Verrax J, Valderrama JA, Calderon PB. Aminopyrimidoisoquinolinequinone (APIQ) redox cycling is potentiated by ascorbate and induces oxidative stress leading to necrotic-like cancer cell death. Invest New Drugs 2012; 30: 1003-1011
  • 148 Gomes A, Fernandes E, Lima JL. Fluorescence probes used for detection of reactive oxygen species. J Biochem Biophys Methods 2005; 65: 45-80
  • 149 Eruslanov E, Kusmartsev S. Identification of ROS using oxidized DCFDA and flow-cytometry. Methods Mol Biol 2010; 594: 57-72
  • 150 Wardman P. Fluorescent and luminescent probes for measurement of oxidative and nitrosative species in cells and tissues: progress, pitfalls, and prospects. Free Radic Biol Med 2007; 43: 995-1022
  • 151 Saengkhae C, Loetchutinat C, Garnier-Suillerot A. Kinetic analysis of fluorescein and dihydrofluorescein effluxes in tumour cells expressing the multidrug resistance protein, MRP1. Biochem Pharmacol 2003; 65: 969-977
  • 152 Hempel SL, Buettner GR, OʼMalley YQ, Wessels DA, Flaherty DM. Dihydrofluorescein diacetate is superior for detecting intracellular oxidants: comparison with 2′,7′-dichlorodihydrofluorescein diacetate, 5(and 6)-carboxy-2′,7′-dichlorodihydrofluorescein diacetate, and dihydrorhodamine 123. Free Radic Biol Med 1999; 27: 146-159
  • 153 Pompella A, Visvikis A, Paolicchi A, De Tata V, Casini AF. The changing faces of glutathione, a cellular protagonist. Biochem Pharmacol 2003; 66: 1499-1503
  • 154 Baker MA, Cerniglia GJ, Zaman A. Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. Anal Biochem 1990; 190: 360-365
  • 155 Gallwitz H, Bonse S, Martinez-Cruz A, Schlichting I, Schumacher K, Krauth-Siegel RL. Ajoene is an inhibitor and subversive substrate of human glutathione reductase and Trypanosoma cruzi trypanothione reductase: crystallographic, kinetic, and spectroscopic studies. J Med Chem 1999; 42: 364-372
  • 156 Rice GC, Bump EA, Shrieve DC, Lee W, Kovacs M. Quantitative analysis of cellular glutathione by flow cytometry utilizing monochlorobimane: some applications to radiation and drug resistance in vitro and in vivo . Cancer Res 1986; 46: 6105-6110
  • 157 Kim DP, Yahav J, Sperandeo M, Maloney L, McTigue M, Lin F, Clark RA. High cell density attenuates reactive oxygen species: implications for in vitro assays. Wound Repair Regen 2012; 20: 74-82
  • 158 Patton S, Kurtz GW. 2-Thiobarbituric acid as a reagent for detecting milk fat oxidation. J Dairy Sci 1951; 34: 669-674
  • 159 Guillen-Sans R, Guzman-Chozas M. The thiobarbituric acid (TBA) reaction in foods: a review. Crit Rev Food Sci Nutr 1998; 38: 315-330
  • 160 Lefevre G, Beljean-Leymarie M, Beyerle F, Bonnefont-Rousselot D, Cristol JP, Therond P, Torreilles J. [Evaluation of lipid peroxidation by measuring thiobarbituric acid reactive substances]. Ann Biol Clin (Paris) 1998; 56: 305-319
  • 161 Louzao MC, Ares IR, Cagide E, Espina B, Vilarino N, Alfonso A, Vieytes MR, Botana LM. Palytoxins and cytoskeleton: An overview. Toxicon 2011; 57: 460-469
  • 162 Peterson JR, Mitchison TJ. Small molecules, big impact: a history of chemical inhibitors and the cytoskeleton. Chem Biol 2002; 9: 1275-1285
  • 163 Borisy GG, Taylor EW. The mechanism of action of colchicine. Binding of colchincine-3H to cellular protein. J Cell Biol 1967; 34: 525-533
  • 164 Nicolaou KC, Finlay MR, Ninkovic S, King NP, He Y, Li T, Sarabia F, Vourloumis D. Synthesis and biological properties of C12, 13-cyclopropyl-epothilone A and related epothilones. Chem Biol 1998; 5: 365-372
  • 165 Small J, Rottner K, Hahne P, Anderson KI. Visualising the actin cytoskeleton. Microsc Res Tech 1999; 47: 3-17
  • 166 Hayot C, Debeir O, Van Ham P, Van Damme M, Kiss R, Decaestecker C. Characterization of the activities of actin-affecting drugs on tumor cell migration. Toxicol Appl Pharmacol 2006; 211: 30-40
  • 167 Simmons SO, Fan CY, Ramabhadran R. Cellular stress response pathway system as a sentinel ensemble in toxicological screening. Toxicol Sci 2009; 111: 202-225
  • 168 Tsien RY. The green fluorescent protein. Annu Rev Biochem 1998; 67: 509-544
  • 169 Crawford AD, Esguerra CV, de Witte PA. Fishing for drugs from nature: zebrafish as a technology platform for natural product discovery. Planta Med 2008; 74: 624-632
  • 170 Borner FU, Schutz H, Wiedemann P. The fragility of omics risk and benefit perceptions. Toxicol Lett 2011; 201: 249-257
  • 171 Bishop WE, Clarke DP, Travis CC. The genomic revolution: what does it mean for risk assessment?. Risk Anal 2001; 21: 983-987
  • 172 Heijne WH, Kienhuis AS, van Ommen B, Stierum RH, Groten JP. Systems toxicology: applications of toxicogenomics, transcriptomics, proteomics and metabolomics in toxicology. Expert Rev Proteomics 2005; 2: 767-780
  • 173 Aardema MJ, MacGregor JT. Toxicology and genetic toxicology in the new era of “toxicogenomics”: impact of “-omics” technologies. Mutat Res 2002; 499: 13-25
  • 174 Marchant GE. Toxicogenomics and toxic torts. Trends Biotechnol 2002; 20: 329-332
  • 175 Marques A, Lourenço HM, Nunes ML, Roseiro C, Santos C, Barranco A, Rainieri S, Langerholc T, Cencic A. New tools to assess toxicity, bioaccessibility and uptake of chemical contaminants in meat and seafood. Food Res Int 2011; 44: 510-522
  • 176 Lay jr. JO, Borgmann S, Liyanage R, Wilkins CL. Problems with the “omics”. Trends Anal Chem 2006; 25: 1046-1056
  • 177 Searfoss GH, Ryan TP, Jolly RA. The role of transcriptome analysis in pre-clinical toxicology. Curr Mol Med 2005; 5: 53-64
  • 178 Ouedraogo M, Baudoux T, Stevigny C, Nortier J, Colet JM, Efferth T, Qu F, Zhou J, Chan K, Shaw D, Pelkonen O, Duez P. Review of current and “omics” methods for assessing the toxicity (genotoxicity, teratogenicity and nephrotoxicity) of herbal medicines and mushrooms. J Ethnopharmacol 2012; 140: 492-512
  • 179 Selderslaghs IW, Blust R, Witters HE. Feasibility study of the zebrafish assay as an alternative method to screen for developmental toxicity and embryotoxicity using a training set of 27 compounds. Reprod Toxicol 2012; 33: 142-154
  • 180 Blechinger SR, Warren jr. JT, Kuwada JY, Krone PH. Developmental toxicology of cadmium in living embryos of a stable transgenic zebrafish line. Environ Health Perspect 2002; 110: 1041-1046
  • 181 Van Raamsdonk JM, Hekimi S. Reactive oxygen species and aging in Caenorhabditis elegans: causal or casual relationship?. Antioxid Redox Signal 2010; 13: 1911-1953
  • 182 Brenner S. The genetics of Caenorhabditis elegans . Genetics 1974; 77: 71-94
  • 183 Leung MC, Williams PL, Benedetto A, Au C, Helmcke KJ, Aschner M, Meyer JN. Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 2008; 106: 5-28
  • 184 Gnoula C, Guissou I, Dubois J, Duez P. 5(6)-Carboxyfluorescein diacetate as an indicator of Caenorhabditis elegans viability for the development of an in vitro anthelmintic drug assay. Talanta 2007; 71: 1886-1892
  • 185 Valerio jr. LG. In silico toxicology for the pharmaceutical sciences. Toxicol Appl Pharmacol 2009; 241: 356-370