Semin Liver Dis 2014; 34(01): 009-021
DOI: 10.1055/s-0034-1371006
Thieme Medical Publishers 333 Seventh Avenue, New York, NY 10001, USA.

Targets for Antiviral Therapy of Hepatitis C

Daniel Rupp
1   Department for Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
2   German Centre for Infection Research, Heidelberg University
,
Ralf Bartenschlager
1   Department for Infectious Diseases, Molecular Virology, University of Heidelberg, Heidelberg, Germany
2   German Centre for Infection Research, Heidelberg University
› Author Affiliations
Further Information

Publication History

Publication Date:
29 April 2014 (online)

Abstract

Presently, interferon- (IFN-) containing treatment regimens are the standard of care for patients with hepatitis C virus (HCV) infections. Although this therapy eliminates the virus in a substantial proportion of patients, it has numerous side effects and contraindications. Recent approval of telaprevir and boceprevir, targeting the protease residing in nonstructural protein 3 (NS3) of the HCV genome, increased therapy success when given in combination with pegylated IFN and ribavirin, but side effects are more frequent and the management of treatment is complex. This situation will change soon with the introduction of new highly potent direct-acting antivirals. They target, in addition to the NS3 protease, NS5A, which is required for RNA replication and virion assembly and the NS5B RNA-dependent RNA polymerase. Moreover, host-cell factors such as cyclophilin A or microRNA-122, essential for HCV replication, have been pursued as therapeutic targets. In this review, the authors briefly summarize the main features of viral and cellular factors involved in HCV replication that are utilized as therapy targets for chronic hepatitis C.

 
  • References

  • 1 Thomas DL. Global control of hepatitis C: where challenge meets opportunity. Nat Med 2013; 19 (7) 850-858
  • 2 Schaefer EA, Chung RT. The impact of human gene polymorphisms on HCV infection and disease outcome. Semin Liver Dis 2011; 31 (4) 375-386
  • 3 Ghany MG, Strader DB, Thomas DL, Seeff LB ; American Association for the Study of Liver Diseases. Diagnosis, management, and treatment of hepatitis C: an update. Hepatology 2009; 49 (4) 1335-1374
  • 4 McHutchison JG, Everson GT, Gordon SC , et al; PROVE1 Study Team. Telaprevir with peginterferon and ribavirin for chronic HCV genotype 1 infection. N Engl J Med 2009; 360 (18) 1827-1838
  • 5 Kanwal F, White DL, Tavakoli-Tabasi S , et al. Many patients with interleukin 28B genotypes associated with response to therapy are ineligible for treatment because of comorbidities. Clin Gastroenterol Hepatol 2014; 12 (2) 327-333, e1
  • 6 Hoffmann L, Ramos JA, Souza EV , et al. Dynamics of resistance mutations to NS3 protease inhibitors in a cohort of Brazilian patients chronically infected with hepatitis C virus (genotype 1) treated with pegylated interferon and ribavirin: a prospective longitudinal study. Virol J 2013; 10: 57
  • 7 Poordad F, McCone Jr J, Bacon BR , et al; SPRINT-2 Investigators. Boceprevir for untreated chronic HCV genotype 1 infection. N Engl J Med 2011; 364 (13) 1195-1206
  • 8 Bacon BR, Gordon SC, Lawitz E , et al; HCV RESPOND-2 Investigators. Boceprevir for previously treated chronic HCV genotype 1 infection. N Engl J Med 2011; 364 (13) 1207-1217
  • 9 Zeuzem S, Andreone P, Pol S , et al; REALIZE Study Team. Telaprevir for retreatment of HCV infection. N Engl J Med 2011; 364 (25) 2417-2428
  • 10 Jacobson IM, McHutchison JG, Dusheiko G , et al; ADVANCE Study Team. Telaprevir for previously untreated chronic hepatitis C virus infection. N Engl J Med 2011; 364 (25) 2405-2416
  • 11 Kieffer TL, Sarrazin C, Miller JS , et al. Telaprevir and pegylated interferon-alpha-2a inhibit wild-type and resistant genotype 1 hepatitis C virus replication in patients. Hepatology 2007; 46 (3) 631-639
  • 12 Aloia AL, Locarnini S, Beard MR. Antiviral resistance and direct-acting antiviral agents for HCV. Antivir Ther 2012; 17 (6 Pt B): 1147-1162
  • 13 Simmonds P. The origin of hepatitis C virus. Curr Top Microbiol Immunol 2013; 369: 1-15
  • 14 André P, Komurian-Pradel F, Deforges S , et al. Characterization of low- and very-low-density hepatitis C virus RNA-containing particles. J Virol 2002; 76 (14) 6919-6928
  • 15 Alvisi G, Madan V, Bartenschlager R. Hepatitis C virus and host cell lipids: an intimate connection. RNA Biol 2011; 8 (2) 258-269
  • 16 Zeisel MB, Felmlee DJ, Baumert TF. Hepatitis C virus entry. Curr Top Microbiol Immunol 2013; 369: 87-112
  • 17 Lupberger J, Zeisel MB, Xiao F , et al. EGFR and EphA2 are host factors for hepatitis C virus entry and possible targets for antiviral therapy. Nat Med 2011; 17 (5) 589-595
  • 18 Sainz Jr B, Barretto N, Martin DN , et al. Identification of the Niemann-Pick C1-like 1 cholesterol absorption receptor as a new hepatitis C virus entry factor. Nat Med 2012; 18 (2) 281-285
  • 19 Moradpour D, Penin F. Hepatitis C virus proteins: from structure to function. Curr Top Microbiol Immunol 2013; 369: 113-142
  • 20 Gentzsch J, Brohm C, Steinmann E , et al. Hepatitis C virus p7 is critical for capsid assembly and envelopment. PLoS Pathog 2013; 9 (5) e1003355
  • 21 Egger D, Wölk B, Gosert R , et al. Expression of hepatitis C virus proteins induces distinct membrane alterations including a candidate viral replication complex. J Virol 2002; 76 (12) 5974-5984
  • 22 Gosert R, Egger D, Lohmann V , et al. Identification of the hepatitis C virus RNA replication complex in Huh-7 cells harboring subgenomic replicons. J Virol 2003; 77 (9) 5487-5492
  • 23 Romero-Brey I, Merz A, Chiramel A , et al. Three-dimensional architecture and biogenesis of membrane structures associated with hepatitis C virus replication. PLoS Pathog 2012; 8 (12) e1003056
  • 24 Barba G, Harper F, Harada T , et al. Hepatitis C virus core protein shows a cytoplasmic localization and associates to cellular lipid storage droplets. Proc Natl Acad Sci U S A 1997; 94 (4) 1200-1205
  • 25 Miyanari Y, Atsuzawa K, Usuda N , et al. The lipid droplet is an important organelle for hepatitis C virus production. Nat Cell Biol 2007; 9 (9) 1089-1097
  • 26 Chang KS, Jiang J, Cai Z, Luo G. Human apolipoprotein e is required for infectivity and production of hepatitis C virus in cell culture. J Virol 2007; 81 (24) 13783-13793
  • 27 Bartenschlager R, Penin F, Lohmann V, André P. Assembly of infectious hepatitis C virus particles. Trends Microbiol 2011; 19 (2) 95-103
  • 28 Lindenbach BD. Virion assembly and release. Curr Top Microbiol Immunol 2013; 369: 199-218
  • 29 Jones CT, Catanese MT, Law LM , et al. Real-time imaging of hepatitis C virus infection using a fluorescent cell-based reporter system. Nat Biotechnol 2010; 28 (2) 167-171
  • 30 Witteveldt J, Evans MJ, Bitzegeio J , et al. CD81 is dispensable for hepatitis C virus cell-to-cell transmission in hepatoma cells. J Gen Virol 2009; 90 (Pt 1) 48-58
  • 31 Brimacombe CL, Grove J, Meredith LW , et al. Neutralizing antibody-resistant hepatitis C virus cell-to-cell transmission. J Virol 2011; 85 (1) 596-605
  • 32 Meylan E, Curran J, Hofmann K , et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 2005; 437 (7062) 1167-1172
  • 33 Li K, Foy E, Ferreon JC , et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIF. Proc Natl Acad Sci U S A 2005; 102 (8) 2992-2997
  • 34 Bartenschlager R, Lohmann V, Penin F. The molecular and structural basis of advanced antiviral therapy for hepatitis C virus infection. Nat Rev Microbiol 2013; 11 (7) 482-496
  • 35 Wölk B, Sansonno D, Kräusslich HG , et al. Subcellular localization, stability, and trans-cleavage competence of the hepatitis C virus NS3-NS4A complex expressed in tetracycline-regulated cell lines. J Virol 2000; 74 (5) 2293-2304
  • 36 Zhu H, Briggs JM. Mechanistic role of NS4A and substrate in the activation of HCV NS3 protease. Proteins 2011; 79 (8) 2428-2443
  • 37 Love RA, Parge HE, Wickersham JA , et al. The crystal structure of hepatitis C virus NS3 proteinase reveals a trypsin-like fold and a structural zinc binding site. Cell 1996; 87 (2) 331-342
  • 38 Kim JL, Morgenstern KA, Lin C , et al. Crystal structure of the hepatitis C virus NS3 protease domain complexed with a synthetic NS4A cofactor peptide. Cell 1996; 87 (2) 343-355
  • 39 De Francesco R, Steinkühler C. Structure and function of the hepatitis C virus NS3-NS4A serine proteinase. Curr Top Microbiol Immunol 2000; 242: 149-169
  • 40 Delang L, Neyts J, Vliegen I, Abrignani S, Neddermann P, De Francesco R. Hepatitis C virus-specific directly acting antiviral drugs. Curr Top Microbiol Immunol 2013; 369: 289-320
  • 41 Brass V, Berke JM, Montserret R, Blum HE, Penin F, Moradpour D. Structural determinants for membrane association and dynamic organization of the hepatitis C virus NS3-4A complex. Proc Natl Acad Sci U S A 2008; 105 (38) 14545-14550
  • 42 Clark VC, Peter JA, Nelson DR. New therapeutic strategies in HCV: second-generation protease inhibitors. Liver Int 2013; 33 (Suppl. 01) 80-84
  • 43 Romano KP, Ali A, Aydin C , et al. The molecular basis of drug resistance against hepatitis C virus NS3/4A protease inhibitors. PLoS Pathog 2012; 8 (7) e1002832
  • 44 Llinàs-Brunet M, Bailey M, Fazal G , et al. Peptide-based inhibitors of the hepatitis C virus serine protease. Bioorg Med Chem Lett 1998; 8 (13) 1713-1718
  • 45 Steinkühler C, Biasiol G, Brunetti M , et al. Product inhibition of the hepatitis C virus NS3 protease. Biochemistry 1998; 37 (25) 8899-8905
  • 46 Lamarre D, Anderson PC, Bailey M , et al. An NS3 protease inhibitor with antiviral effects in humans infected with hepatitis C virus. Nature 2003; 426 (6963) 186-189
  • 47 Sarrazin C, Zeuzem S. Resistance to direct antiviral agents in patients with hepatitis C virus infection. Gastroenterology 2010; 138 (2) 447-462
  • 48 Susser S, Welsch C, Wang Y , et al. Characterization of resistance to the protease inhibitor boceprevir in hepatitis C virus-infected patients. Hepatology 2009; 50 (6) 1709-1718
  • 49 Halfon P, Locarnini S. Hepatitis C virus resistance to protease inhibitors. J Hepatol 2011; 55 (1) 192-206
  • 50 Cento V, Mirabelli C, Salpini R , et al. HCV genotypes are differently prone to the development of resistance to linear and macrocyclic protease inhibitors. PLoS ONE 2012; 7 (7) e39652
  • 51 López-Labrador FX, Moya A, Gonzàlez-Candelas F. Mapping natural polymorphisms of hepatitis C virus NS3/4A protease and antiviral resistance to inhibitors in worldwide isolates. Antivir Ther 2008; 13 (4) 481-494
  • 52 Summa V, Ludmerer SW, McCauley JA , et al. MK-5172, a selective inhibitor of hepatitis C virus NS3/4a protease with broad activity across genotypes and resistant variants. Antimicrob Agents Chemother 2012; 56 (8) 4161-4167
  • 53 Ali A, Aydin C, Gildemeister R , et al. Evaluating the role of macrocycles in the susceptibility of hepatitis C virus NS3/4A protease inhibitors to drug resistance. ACS Chem Biol 2013; ; epub ahead of print
  • 54 Abian O, Vega S, Sancho J, Velazquez-Campoy A. Allosteric inhibitors of the NS3 protease from the hepatitis C virus. PLoS ONE 2013; 8 (7) e69773
  • 55 Yang W, Zhao Y, Fabrycki J , et al. Selection of replicon variants resistant to ACH-806, a novel hepatitis C virus inhibitor with no cross-resistance to NS3 protease and NS5B polymerase inhibitors. Antimicrob Agents Chemother 2008; 52 (6) 2043-2052
  • 56 Yang W, Sun Y, Hou X , et al. ACH-806, an NS4A antagonist, inhibits hepatitis C virus replication by altering the composition of viral replication complexes. Antimicrob Agents Chemother 2013; 57 (7) 3168-3177
  • 57 Saalau-Bethell SM, Woodhead AJ, Chessari G , et al. Discovery of an allosteric mechanism for the regulation of HCV NS3 protein function. Nat Chem Biol 2012; 8 (11) 920-925
  • 58 He Y, Staschke KA, Tan SL. HCV NS5A: A multifunctional regulator of cellular pathways and virus replication. In: Tan SL, , ed. Hepatitis C Viruses: Genomes and Molecular Biology. Norfolk, UK: Horizon Bioscience; 2006: 267-292
  • 59 Penin F, Brass V, Appel N , et al. Structure and function of the membrane anchor domain of hepatitis C virus nonstructural protein 5A. J Biol Chem 2004; 279 (39) 40835-40843
  • 60 Tellinghuisen TL, Marcotrigiano J, Gorbalenya AE, Rice CM. The NS5A protein of hepatitis C virus is a zinc metalloprotein. J Biol Chem 2004; 279 (47) 48576-48587
  • 61 Tellinghuisen TL, Marcotrigiano J, Rice CM. Structure of the zinc-binding domain of an essential component of the hepatitis C virus replicase. Nature 2005; 435 (7040) 374-379
  • 62 Love RA, Brodsky O, Hickey MJ, Wells PA, Cronin CN. Crystal structure of a novel dimeric form of NS5A domain I protein from hepatitis C virus. J Virol 2009; 83 (9) 4395-4403
  • 63 Verdegem D, Badillo A, Wieruszeski JM , et al. Domain 3 of NS5A protein from the hepatitis C virus has intrinsic alpha-helical propensity and is a substrate of cyclophilin A. J Biol Chem 2011; 286 (23) 20441-20454
  • 64 Hanoulle X, Verdegem D, Badillo A, Wieruszeski JM, Penin F, Lippens G. Domain 3 of non-structural protein 5A from hepatitis C virus is natively unfolded. Biochem Biophys Res Commun 2009; 381 (4) 634-638
  • 65 Appel N, Zayas M, Miller S , et al. Essential role of domain III of nonstructural protein 5A for hepatitis C virus infectious particle assembly. PLoS Pathog 2008; 4 (3) e1000035
  • 66 Tellinghuisen TL, Foss KL, Treadaway J. Regulation of hepatitis C virion production via phosphorylation of the NS5A protein. PLoS Pathog 2008; 4 (3) e1000032
  • 67 Masaki T, Suzuki R, Murakami K , et al. Interaction of hepatitis C virus nonstructural protein 5A with core protein is critical for the production of infectious virus particles. J Virol 2008; 82 (16) 7964-7976
  • 68 Moradpour D, Evans MJ, Gosert R , et al. Insertion of green fluorescent protein into nonstructural protein 5A allows direct visualization of functional hepatitis C virus replication complexes. J Virol 2004; 78 (14) 7400-7409
  • 69 Appel N, Pietschmann T, Bartenschlager R. Mutational analysis of hepatitis C virus nonstructural protein 5A: potential role of differential phosphorylation in RNA replication and identification of a genetically flexible domain. J Virol 2005; 79 (5) 3187-3194
  • 70 Schaller T, Appel N, Koutsoudakis G , et al. Analysis of hepatitis C virus superinfection exclusion by using novel fluorochrome gene-tagged viral genomes. J Virol 2007; 81 (9) 4591-4603
  • 71 Kaneko T, Tanji Y, Satoh S , et al. Production of two phosphoproteins from the NS5A region of the hepatitis C viral genome. Biochem Biophys Res Commun 1994; 205 (1) 320-326
  • 72 Quintavalle M, Sambucini S, Summa V , et al. Hepatitis C virus NS5A is a direct substrate of casein kinase I-alpha, a cellular kinase identified by inhibitor affinity chromatography using specific NS5A hyperphosphorylation inhibitors. J Biol Chem 2007; 282 (8) 5536-5544
  • 73 Pietschmann T, Zayas M, Meuleman P , et al. Production of infectious genotype 1b virus particles in cell culture and impairment by replication enhancing mutations. PLoS Pathog 2009; 5 (6) e1000475
  • 74 Gao M, Nettles RE, Belema M , et al. Chemical genetics strategy identifies an HCV NS5A inhibitor with a potent clinical effect. Nature 2010; 465 (7294) 96-100
  • 75 Targett-Adams P, Graham EJ, Middleton J , et al. Small molecules targeting hepatitis C virus-encoded NS5A cause subcellular redistribution of their target: insights into compound modes of action. J Virol 2011; 85 (13) 6353-6368
  • 76 Lee C, Ma H, Hang JQ , et al. The hepatitis C virus NS5A inhibitor (BMS-790052) alters the subcellular localization of the NS5A non-structural viral protein. Virology 2011; 414 (1) 10-18
  • 77 Fridell RA, Valera L, Qiu D, Kirk MJ, Wang C, Gao M. Intragenic complementation of hepatitis C virus NS5A RNA replication-defective alleles. J Virol 2013; 87 (4) 2320-2329
  • 78 Reiss S, Rebhan I, Backes P , et al. Recruitment and activation of a lipid kinase by hepatitis C virus NS5A is essential for integrity of the membranous replication compartment. Cell Host Microbe 2011; 9 (1) 32-45
  • 79 Paul D, Hoppe S, Saher G, Krijnse-Locker J, Bartenschlager R. Morphological and biochemical characterization of the membranous hepatitis C virus replication compartment. J Virol 2013; 87 (19) 10612-10627
  • 80 Belda O, Targett-Adams P. Small molecule inhibitors of the hepatitis C virus-encoded NS5A protein. Virus Res 2012; 170 (1-2) 1-14
  • 81 Guedj J, Dahari H, Rong L , et al. Modeling shows that the NS5A inhibitor daclatasvir has two modes of action and yields a shorter estimate of the hepatitis C virus half-life. Proc Natl Acad Sci U S A 2013; 110 (10) 3991-3996
  • 82 Bressanelli S, Tomei L, Rey FA, De Francesco R. Structural analysis of the hepatitis C virus RNA polymerase in complex with ribonucleotides. J Virol 2002; 76 (7) 3482-3492
  • 83 Ago H, Adachi T, Yoshida A , et al. Crystal structure of the RNA-dependent RNA polymerase of hepatitis C virus. Structure 1999; 7 (11) 1417-1426
  • 84 Lesburg CA, Cable MB, Ferrari E, Hong Z, Mannarino AF, Weber PC. Crystal structure of the RNA-dependent RNA polymerase from hepatitis C virus reveals a fully encircled active site. Nat Struct Biol 1999; 6 (10) 937-943
  • 85 Mosley RT, Edwards TE, Murakami E , et al. Structure of hepatitis C virus polymerase in complex with primer-template RNA. J Virol 2012; 86 (12) 6503-6511
  • 86 Madela K, McGuigan C. Progress in the development of anti-hepatitis C virus nucleoside and nucleotide prodrugs. Future Med Chem 2012; 4 (5) 625-650
  • 87 Sarrazin C, Hézode C, Zeuzem S, Pawlotsky JM. Antiviral strategies in hepatitis C virus infection. J Hepatol 2012; 56 (Suppl. 01) S88-S100
  • 88 Powdrill MH, Bernatchez JA, Götte M. Inhibitors of the hepatitis C virus RNA-dependent RNA polymerase NS5B. Viruses 2010; 2 (10) 2169-2195
  • 89 Shim J, Larson G, Lai V, Naim S, Wu JZ. Canonical 3′-deoxyribonucleotides as a chain terminator for HCV NS5B RNA-dependent RNA polymerase. Antiviral Res 2003; 58 (3) 243-251
  • 90 Pockros PJ. Nucleoside/nucleotide analogue polymerase inhibitors in development. Clin Liver Dis 2013; 17 (1) 105-110
  • 91 Le Pogam S, Jiang WR, Leveque V , et al. In vitro selected Con1 subgenomic replicons resistant to 2′-C-methyl-cytidine or to R1479 show lack of cross resistance. Virology 2006; 351 (2) 349-359
  • 92 Pawlotsky JM. The science of direct-acting antiviral and host-targeted agent therapy. Antivir Ther 2012; 17 (6 Pt B): 1109-1117
  • 93 De Francesco R, Carfí A. Advances in the development of new therapeutic agents targeting the NS3-4A serine protease or the NS5B RNA-dependent RNA polymerase of the hepatitis C virus. Adv Drug Deliv Rev 2007; 59 (12) 1242-1262
  • 94 Davis BC, Thorpe IF. Thumb inhibitor binding eliminates functionally important dynamics in the hepatitis C virus RNA polymerase. Proteins 2013; 81 (1) 40-52
  • 95 Di Marco S, Volpari C, Tomei L , et al. Interdomain communication in hepatitis C virus polymerase abolished by small molecule inhibitors bound to a novel allosteric site. J Biol Chem 2005; 280 (33) 29765-29770
  • 96 Jopling CL, Yi M, Lancaster AM, Lemon SM, Sarnow P. Modulation of hepatitis C virus RNA abundance by a liver-specific MicroRNA. Science 2005; 309 (5740) 1577-1581
  • 97 Jopling CL, Schütz S, Sarnow P. Position-dependent function for a tandem microRNA miR-122-binding site located in the hepatitis C virus RNA genome. Cell Host Microbe 2008; 4 (1) 77-85
  • 98 Jopling CL. Regulation of hepatitis C virus by microRNA-122. Biochem Soc Trans 2008; 36 (Pt 6) 1220-1223
  • 99 Li Y, Masaki T, Lemon SM. miR-122 and the hepatitis C RNA genome: more than just stability. RNA Biol 2013; 10 (6) 919-923
  • 100 Shimakami T, Yamane D, Jangra RK , et al. Stabilization of hepatitis C virus RNA by an Ago2-miR-122 complex. Proc Natl Acad Sci U S A 2012; 109 (3) 941-946
  • 101 Henke JI, Goergen D, Zheng J , et al. microRNA-122 stimulates translation of hepatitis C virus RNA. EMBO J 2008; 27 (24) 3300-3310
  • 102 Randall G, Panis M, Cooper JD , et al. Cellular cofactors affecting hepatitis C virus infection and replication. Proc Natl Acad Sci U S A 2007; 104 (31) 12884-12889
  • 103 Lanford RE, Hildebrandt-Eriksen ES, Petri A , et al. Therapeutic silencing of microRNA-122 in primates with chronic hepatitis C virus infection. Science 2010; 327 (5962) 198-201
  • 104 Janssen HL, Reesink HW, Lawitz EJ , et al. Treatment of HCV infection by targeting microRNA. N Engl J Med 2013; 368 (18) 1685-1694
  • 105 Tsai WC, Hsu SD, Hsu CS , et al. MicroRNA-122 plays a critical role in liver homeostasis and hepatocarcinogenesis. J Clin Invest 2012; 122 (8) 2884-2897
  • 106 Hsu SH, Wang B, Kota J , et al. Essential metabolic, anti-inflammatory, and anti-tumorigenic functions of miR-122 in liver. J Clin Invest 2012; 122 (8) 2871-2883
  • 107 Galat A, Bua J. Molecular aspects of cyclophilins mediating therapeutic actions of their ligands. Cell Mol Life Sci 2010; 67 (20) 3467-3488
  • 108 Watashi K, Hijikata M, Hosaka M, Yamaji M, Shimotohno K. Cyclosporin A suppresses replication of hepatitis C virus genome in cultured hepatocytes. Hepatology 2003; 38 (5) 1282-1288
  • 109 Watashi K, Ishii N, Hijikata M , et al. Cyclophilin B is a functional regulator of hepatitis C virus RNA polymerase. Mol Cell 2005; 19 (1) 111-122
  • 110 Yang F, Robotham JM, Nelson HB, Irsigler A, Kenworthy R, Tang H. Cyclophilin A is an essential cofactor for hepatitis C virus infection and the principal mediator of cyclosporine resistance in vitro. J Virol 2008; 82 (11) 5269-5278
  • 111 Kaul A, Stauffer S, Berger C , et al. Essential role of cyclophilin A for hepatitis C virus replication and virus production and possible link to polyprotein cleavage kinetics. PLoS Pathog 2009; 5 (8) e1000546
  • 112 Chatterji U, Bobardt M, Selvarajah S , et al. The isomerase active site of cyclophilin A is critical for hepatitis C virus replication. J Biol Chem 2009; 284 (25) 16998-17005
  • 113 Liu Z, Yang F, Robotham JM, Tang H. Critical role of cyclophilin A and its prolyl-peptidyl isomerase activity in the structure and function of the hepatitis C virus replication complex. J Virol 2009; 83 (13) 6554-6565
  • 114 Foster TL, Gallay P, Stonehouse NJ, Harris M. Cyclophilin A interacts with domain II of hepatitis C virus NS5A and stimulates RNA binding in an isomerase-dependent manner. J Virol 2011; 85 (14) 7460-7464
  • 115 Hopkins S, Bobardt M, Chatterji U, Garcia-Rivera JA, Lim P, Gallay PA. The cyclophilin inhibitor SCY-635 disrupts hepatitis C virus NS5A-cyclophilin A complexes. Antimicrob Agents Chemother 2012; 56 (7) 3888-3897
  • 116 Ciesek S, Steinmann E, Wedemeyer H , et al. Cyclosporine A inhibits hepatitis C virus nonstructural protein 2 through cyclophilin A. Hepatology 2009; 50 (5) 1638-1645
  • 117 Madan V, Paul D, Lohmann V, Bartenschlager R. Inhibition of HCV replication by cyclophilin antagonists is linked to replication fitness and occurs by inhibition of membranous web formation. Gastroenterology 2014; Jan 30. [Epub ahead of print]
  • 118 Inoue K, Sekiyama K, Yamada M, Watanabe T, Yasuda H, Yoshiba M. Combined interferon alpha2b and cyclosporin A in the treatment of chronic hepatitis C: controlled trial. J Gastroenterol 2003; 38 (6) 567-572
  • 119 Flisiak R, Jaroszewicz J, Flisiak I, Łapiński T. Update on alisporivir in treatment of viral hepatitis C. Expert Opin Investig Drugs 2012; 21 (3) 375-382
  • 120 Pfefferle S, Schöpf J, Kögl M , et al. The SARS-coronavirus-host interactome: identification of cyclophilins as target for pan-coronavirus inhibitors. PLoS Pathog 2011; 7 (10) e1002331
  • 121 Goto K, Watashi K, Inoue D, Hijikata M, Shimotohno K. Identification of cellular and viral factors related to anti-hepatitis C virus activity of cyclophilin inhibitor. Cancer Sci 2009; 100 (10) 1943-1950
  • 122 Chatterji U, Lim P, Bobardt MD , et al. HCV resistance to cyclosporin A does not correlate with a resistance of the NS5A-cyclophilin A interaction to cyclophilin inhibitors. J Hepatol 2010; 53 (1) 50-56
  • 123 Puyang X, Poulin DL, Mathy JE , et al. Mechanism of resistance of hepatitis C virus replicons to structurally distinct cyclophilin inhibitors. Antimicrob Agents Chemother 2010; 54 (5) 1981-1987
  • 124 Yang F, Robotham JM, Grise H , et al. A major determinant of cyclophilin dependence and cyclosporine susceptibility of hepatitis C virus identified by a genetic approach. PLoS Pathog 2010; 6 (9) e1001118
  • 125 Coelmont L, Hanoulle X, Chatterji U , et al. DEB025 (Alisporivir) inhibits hepatitis C virus replication by preventing a cyclophilin A induced cis-trans isomerisation in domain II of NS5A. PLoS ONE 2010; 5 (10) e13687
  • 126 Zeisel MB, Fofana I, Fafi-Kremer S, Baumert TF. Hepatitis C virus entry into hepatocytes: molecular mechanisms and targets for antiviral therapies. J Hepatol 2011; 54 (3) 566-576
  • 127 Angus AG, Patel AH. Immunotherapeutic potential of neutralizing antibodies targeting conserved regions of the HCV envelope glycoprotein E2. Future Microbiol 2011; 6 (3) 279-294
  • 128 Meuleman P, Bukh J, Verhoye L , et al. In vivo evaluation of the cross-genotype neutralizing activity of polyclonal antibodies against hepatitis C virus. Hepatology 2011; 53 (3) 755-762
  • 129 Giang E, Dorner M, Prentoe JC , et al. Human broadly neutralizing antibodies to the envelope glycoprotein complex of hepatitis C virus. Proc Natl Acad Sci U S A 2012; 109 (16) 6205-6210
  • 130 Keck ZY, Xia J, Wang Y , et al. Human monoclonal antibodies to a novel cluster of conformational epitopes on HCV E2 with resistance to neutralization escape in a genotype 2a isolate. PLoS Pathog 2012; 8 (4) e1002653
  • 131 OuYang B, Xie S, Berardi MJ , et al. Unusual architecture of the p7 channel from hepatitis C virus. Nature 2013; 498 (7455) 521-525
  • 132 Chandler DE, Penin F, Schulten K, Chipot C. The p7 protein of hepatitis C virus forms structurally plastic, minimalist ion channels. PLOS Comput Biol 2012; 8 (9) e1002702
  • 133 Luik P, Chew C, Aittoniemi J , et al. The 3-dimensional structure of a hepatitis C virus p7 ion channel by electron microscopy. Proc Natl Acad Sci U S A 2009; 106 (31) 12712-12716
  • 134 Steinmann E, Pietschmann T. Hepatitis C virus p7-a viroporin crucial for virus assembly and an emerging target for antiviral therapy. Viruses 2010; 2 (9) 2078-2095
  • 135 Wozniak AL, Griffin S, Rowlands D , et al. Intracellular proton conductance of the hepatitis C virus p7 protein and its contribution to infectious virus production. PLoS Pathog 2010; 6 (9) e1001087
  • 136 Steinmann E, Penin F, Kallis S, Patel AH, Bartenschlager R, Pietschmann T. Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions. PLoS Pathog 2007; 3 (7) e103
  • 137 Carlsson T, Lindahl K, Schvarcz R , et al. HCV RNA levels during therapy with amantadine in addition to interferon and ribavirin in chronic hepatitis C patients with previous nonresponse or response/relapse to interferon and ribavirin. J Viral Hepat 2000; 7 (6) 409-413
  • 138 Piai G, Rocco P, Tartaglione MT , et al. Triple (interferon, ribavirin, amantadine) versus double (interferon, ribavirin) re-therapy for interferon relapser genotype 1b HCV chronic active hepatitis patients. Hepatol Res 2003; 25 (4) 355-363
  • 139 Tabone M, Ercole E, Zaffino C, Sallio Bruno F, Pera A, Bonino F. Amantadine hydrochloride decreases serum ALT activity without effects on serum HCV-RNA in chronic hepatitis C patients. Ital J Gastroenterol Hepatol 1998; 30 (6) 611-613
  • 140 Lundin M, Lindström H, Grönwall C, Persson MA. Dual topology of the processed hepatitis C virus protein NS4B is influenced by the NS5A protein. J Gen Virol 2006; 87 (Pt 11) 3263-3272
  • 141 Gouttenoire J, Roingeard P, Penin F, Moradpour D. Amphipathic alpha-helix AH2 is a major determinant for the oligomerization of hepatitis C virus nonstructural protein 4B. J Virol 2010; 84 (24) 12529-12537
  • 142 Paul D, Romero-Brey I, Gouttenoire J , et al. NS4B self-interaction through conserved C-terminal elements is required for the establishment of functional hepatitis C virus replication complexes. J Virol 2011; 85 (14) 6963-6976
  • 143 Einav S, Gerber D, Bryson PD , et al. Discovery of a hepatitis C target and its pharmacological inhibitors by microfluidic affinity analysis. Nat Biotechnol 2008; 26 (9) 1019-1027
  • 144 Jones DM, Patel AH, Targett-Adams P, McLauchlan J. The hepatitis C virus NS4B protein can trans-complement viral RNA replication and modulates production of infectious virus. J Virol 2009; 83 (5) 2163-2177
  • 145 Zhang X, Zhang N, Chen G , et al. Discovery of novel HCV inhibitors: synthesis and biological activity of 6-(indol-2-yl)pyridine-3-sulfonamides targeting hepatitis C virus NS4B. Bioorg Med Chem Lett 2013; 23 (13) 3947-3953
  • 146 Cho NJ, Dvory-Sobol H, Lee C , et al. Identification of a class of HCV inhibitors directed against the nonstructural protein NS4B. Sci Transl Med 2010; 2 (15) ra6
  • 147 Bryson PD, Cho NJ, Einav S , et al. A small molecule inhibits HCV replication and alters NS4B's subcellular distribution. Antiviral Res 2010; 87 (1) 1-8
  • 148 Ferenci P, Scherzer TM, Kerschner H , et al. Silibinin is a potent antiviral agent in patients with chronic hepatitis C not responding to pegylated interferon/ribavirin therapy. Gastroenterology 2008; 135 (5) 1561-1567
  • 149 Beinhardt S, Rasoul-Rockenschaub S, Scherzer TM, Ferenci P. Silibinin monotherapy prevents graft infection after orthotopic liver transplantation in a patient with chronic hepatitis C. J Hepatol 2011; 54 (3) 591-592 , author reply 592–593
  • 150 Bárcena R, Moreno A, Rodríguez-Gandía MA , et al; Hospital Ramón y Cajal Liver Transplant Group. Safety and anti-HCV effect of prolonged intravenous silibinin in HCV genotype 1 subjects in the immediate liver transplant period. J Hepatol 2013; 58 (3) 421-426
  • 151 Wagoner J, Negash A, Kane OJ , et al. Multiple effects of silymarin on the hepatitis C virus lifecycle. Hepatology 2010; 51 (6) 1912-1921
  • 152 Blaising J, Lévy PL, Gondeau C , et al. Silibinin inhibits hepatitis C virus entry into hepatocytes by hindering clathrin-dependent trafficking. Cell Microbiol 2013; 15 (11) 1866-1882
  • 153 Mehrab-Mohseni M, Sendi H, Steuerwald N, Ghosh S, Schrum LW, Bonkovsky HL. Legalon-SIL downregulates HCV core and NS5A in human hepatocytes expressing full-length HCV. World J Gastroenterol 2011; 17 (13) 1694-1700
  • 154 Polyak SJ, Oberlies NH, Pécheur EI, Dahari H, Ferenci P, Pawlotsky JM. Silymarin for HCV infection. Antivir Ther 2013; 18 (2) 141-147
  • 155 Ahmed-Belkacem A, Ahnou N, Barbotte L , et al. Silibinin and related compounds are direct inhibitors of hepatitis C virus RNA-dependent RNA polymerase. Gastroenterology 2010; 138 (3) 1112-1122
  • 156 Esser-Nobis K, Romero-Brey I, Ganten TM , et al. Analysis of hepatitis C virus resistance to silibinin in vitro and in vivo points to a novel mechanism involving nonstructural protein 4B. Hepatology 2013; 57 (3) 953-963
  • 157 Guedj J, Dahari H, Pohl RT, Ferenci P, Perelson AS. Understanding silibinin's modes of action against HCV using viral kinetic modeling. J Hepatol 2012; 56 (5) 1019-1024