CC BY-NC-ND 4.0 · Int Arch Otorhinolaryngol 2021; 25(02): e318-e327
DOI: 10.1055/s-0040-1715149
Update Article

Imaging Studies in Otosclerosis: An Up-to-date Comprehensive Review

1   Department of Otolaryngology and Head and Neck Surgery, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
,
Luiz Otávio de Mattos Coelho
2   DAPI Centro Diagnóstico, Curitiba, PR, Brazil
,
1   Department of Otolaryngology and Head and Neck Surgery, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
,
Adriana Kosma Pires de Oliveira
3   Instituto Paranaense de Otorrinolaringologia, Curitiba, PR, Brazil
,
Rogerio Hamerschmidt
1   Department of Otolaryngology and Head and Neck Surgery, Hospital de Clínicas, Universidade Federal do Paraná, Curitiba, PR, Brazil
› Author Affiliations

Abstract

Introduction Otosclerosis is a primary osteodystrophy of the otic capsule, frequently responsible for acquired hearing loss in adults. Although the diagnostic value of imaging investigations in otosclerosis is debatable, they might still be employed with different goals within the context of the disease.

Objectives The present paper aims to review the most recent literature on the use of imaging studies in otosclerosis for the most varied purposes, from routine application and differential diagnosis to prognostic prediction and investigation of surgical failure.

Data Synthesis The diagnosis of otosclerosis is usually clinical, but computed tomography (CT) is paramount in particular cases for the differential diagnosis. The routine use, however, is not supported by strong evidence. Even so, there is growing evidence of the role of this method in surgical planning and prediction of postoperative prognosis. In specific scenarios, for example when superior semicircular canal dehiscence (SSCD) syndrome is suspected or in surgical failure, CT is crucial indeed. Magnetic resonance imaging (MRI), however, has limited – although important – indications in the management of individuals with otosclerosis, especially in the evaluation of postoperative complications and in the follow-up of medical treatment in active ostosclerosis.

Conclusion Imaging studies have a broad range of well-established indications in otosclerosis. Besides, although the routine use of CT remains controversial, the most recent papers have shed light into new potential benefits of imaging prior to surgery.



Publication History

Received: 12 May 2020

Accepted: 21 June 2020

Article published online:
24 September 2020

© 2020. Fundação Otorrinolaringologia. This is an open access article published by Thieme under the terms of the Creative Commons Attribution-NonDerivative-NonCommercial License, permitting copying and reproduction so long as the original work is given appropriate credit. Contents may not be used for commecial purposes, or adapted, remixed, transformed or built upon. (https://creativecommons.org/licenses/by-nc-nd/4.0/)

Thieme Revinter Publicações Ltda.
Rua do Matoso 170, Rio de Janeiro, RJ, CEP 20270-135, Brazil

 
  • References

  • 1 Vicente AdeO, Yamashita HK, Albernaz PL, Penido NdeO, Penido NDO, Paulo S. Computed tomography in the diagnosis of otosclerosis. Otolaryngol Head Neck Surg 2006; 134 (04) 685-692 DOI: 10.1016/j.otohns.2005.11.030.
  • 2 Goh JPN, Chan LL, Tan TY. MRI of cochlear otosclerosis. Br J Radiol 2002; 75 (894) 502-505
  • 3 Glasscock M, Shambaugh G. Surgery of the Ear. 4th ed. Philadelphia: WB Saunders; 1990
  • 4 Swartz JD, Faerber EN, Wolfson RJ, Marlowe FI. Fenestral otosclerosis: significance of preoperative CT evaluation. Radiology 1984; 151 (03) 703-707 DOI: 10.1148/radiology.151.3.6718730.
  • 5 Purohit B, Hermans R, Op de Beeck K. Imaging in otosclerosis: A pictorial review. Insights Imaging 2014; 5 (02) 245-252 DOI: 10.1007/s13244-014-0313-9.
  • 6 Valvassori GE. Imaging of otosclerosis. Otolaryngol Clin North Am 1993; 26 (03) 359-371
  • 7 Schwartz J, Mukherji S. The Inner Ear and Otodystrophies. In: Swartz J, Loevner L. eds. Imaging of the Temporal Bone. 4th ed. New York: Thieme; 2009: 298-411
  • 8 Lee TC, Aviv RI, Chen JM, Nedzelski JM, Fox AJ, Symons SP. CT grading of otosclerosis. AJNR Am J Neuroradiol 2009; 30 (07) 1435-1439 DOI: 10.3174/ajnr.A1558.
  • 9 Chole RA, McKenna M. Pathophysiology of otosclerosis. Otol Neurotol 2001; 22 (02) 249-257
  • 10 Wolfovitz A, Luntz M. Impact of Imaging in Management of Otosclerosis. Otolaryngol Clin North Am 2018; 51 (02) 343-355 DOI: 10.1016/j.otc.2017.11.005.
  • 11 Priya SR, Singh PP, Upreti L, Vaid L. High resolution computed tomography in stapedial otosclerosis. Indian J Otolaryngol Head Neck Surg 2013; 65 (Suppl. 03) 505-511 DOI: 10.1007/s12070-011-0412-6.
  • 12 Cherukupally SR, Merchant SN, Rosowski JJ. Correlations between pathologic changes in the stapes and conductive hearing loss in otosclerosis. Ann Otol Rhinol Laryngol 1998; 107 (04) 319-326
  • 13 Shin YJ, Fraysse B, Deguine O, Cognard C, Charlet JP, Sévely A. Sensorineural hearing loss and otosclerosis: a clinical and radiologic survey of 437 cases. Acta Otolaryngol 2001; 121 (02) 200-204
  • 14 Karosi T, Csomor P, Sziklai I. The value of HRCT in stapes fixations corresponding to hearing thresholds and histologic findings. Otol Neurotol 2012; 33 (08) 1300-1307
  • 15 Dudau C, Salim F, Jiang D, Connor SEJ. Diagnostic efficacy and therapeutic impact of computed tomography in the evaluation of clinically suspected otosclerosis. Eur Radiol 2017; 27 (03) 1195-1201 DOI: 10.1007/s00330-016-4446-8.
  • 16 Min JY, Chung WH, Lee WY. et al. Otosclerosis: incidence of positive findings on temporal bone computed tomography (TBCT) and audiometric correlation in Korean patients. Auris Nasus Larynx 2010; 37 (01) 23-28 DOI: 10.1016/j.anl.2009.04.010.
  • 17 Naumann IC, Porcellini B, Fisch U. Otosclerosis: incidence of positive findings on high-resolution computed tomography and their correlation to audiological test data. Ann Otol Rhinol Laryngol 2005; 114 (09) 709-716
  • 18 Kawase S, Naganawa S, Sone M, Ikeda M, Ishigaki T. Relationship between CT densitometry with a slice thickness of 0.5 mm and audiometry in otosclerosis. Eur Radiol 2006; 16 (06) 1367-1373 DOI: 10.1007/s00330-005-0128-7.
  • 19 Yamashita K, Yoshiura T, Hiwatashi A. et al. The radiological diagnosis of fenestral otosclerosis: the utility of histogram analysis using multidetector row CT. Eur Arch Otorhinolaryngol 2014; 271 (12) 3277-3282 DOI: 10.1007/s00405-014-2933-6.
  • 20 Grayeli AB, Yrieix CS, Imauchi Y, Cyna-Gorse F, Ferrary E, Sterkers O. Temporal bone density measurements using CT in otosclerosis. Acta Otolaryngol 2004; 124 (10) 1136-1140
  • 21 Kutlar G, Koyuncu M, Elmali M, Basar F, Atmaca S. Are computed tomography and densitometric measurements useful in otosclerosis with mixed hearing loss? A retrospective clinical study. Eur Arch Otorhinolaryngol 2014; 271 (09) 2421-2425 DOI: 10.1007/s00405-013-2729-0.
  • 22 Levi C, Gray JE, McCullough EC, Hattery RR. The unreliability of CT numbers as absolute values. AJR Am J Roentgenol 1982; 139 (03) 443-447
  • 23 Yamashita K, Hiwatashi A, Togao O. et al. Additive value of “otosclerosis-weighted” images for the CT diagnosis of fenestral otosclerosis. Acta Radiol 2017; 58 (10) 1215-1221 DOI: 10.1177/0284185116687172.
  • 24 Sanghan N, Chansakul T, Kozin ED, Juliano AF, Curtin HD, Reinshagen KL. Retrospective Review of Otic Capsule Contour and Thickness in Patients with Otosclerosis and Individuals with Normal Hearing on CT. AJNR Am J Neuroradiol 2018; 39 (12) 2350-2355
  • 25 Kanona H, Rana I, Offiah C, Patel N. Importance of a dedicated neuroradiologist in reporting high-resolution computed tomography for otosclerosis: a retrospective comparison study of 40 patients. J Laryngol Otol 2017; 131 (06) 492-496 DOI: 10.1017/S0022215117000561.
  • 26 Brown LA, Mocan BO, Redleaf MI. Diagnostic Protocol for Detecting Otosclerosis on High-Resolution Temporal Bone CT. Ann Otol Rhinol Laryngol 2019; 128 (11) 1054-1060 DOI: 10.1177/0003489419859036.
  • 27 Liktor B, Révész P, Csomor P, Gerlinger I, Sziklai I, Karosi T. Diagnostic value of cone-beam CT in histologically confirmed otosclerosis. Eur Arch Otorhinolaryngol 2014; 271 (08) 2131-2138
  • 28 Redfors YD, Gröndahl HG, Hellgren J, Lindfors N, Nilsson I, Möller C. Otosclerosis: anatomy and pathology in the temporal bone assessed by multi-slice and cone-beam CT. Otol Neurotol 2012; 33 (06) 922-927
  • 29 Virk JS, Singh A, Lingam RK. The role of imaging in the diagnosis and management of otosclerosis. Otol Neurotol 2013; 34 (07) e55-e60
  • 30 Wegner I, van Waes AMA, Bittermann AJ. et al. A Systematic Review of the Diagnostic Value of CT Imaging in Diagnosing Otosclerosis. Otol Neurotol 2016; 37 (01) 9-15
  • 31 Rotteveel LJ, Proops DW, Ramsden RT, Saeed SR, van Olphen AF, Mylanus EA. Cochlear implantation in 53 patients with otosclerosis: demographics, computed tomographic scanning, surgery, and complications. Otol Neurotol 2004; 25 (06) 943-952
  • 32 Marshall AH, Fanning N, Symons S, Shipp D, Chen JM, Nedzelski JM. Cochlear implantation in cochlear otosclerosis. Laryngoscope 2005; 115 (10) 1728-1733 DOI: 10.1097/01.mlg.0000171052.34196.ef.
  • 33 Veillon F, Stierle J-L, Dussaix J, Ramos-Taboada L, Riehm S. Imagerie de l'otospongiose: confrontation clinique et imagerie. J Radiol 2006; 87 (11 Pt 2): 1756-1764
  • 34 Meranger A, David A, Beigner BM, Charpiot A, Tavernier L. Audiometric Results of Stapedotomy Surgery for Otoscelorsis: Influence of the Radiological Stage. Otol Neurotol 2019; 40 (02) e75-e81 DOI: 10.1097/MAO.0000000000002109.
  • 35 Shin YJ, Deguine O, Cognard C, Sévely A, Manelfe C, Fraysse B. [Reliability of CT scan in the diagnosis of conductive hearing loss with normal tympanic membrane]. Rev Laryngol Otol Rhinol (Bord) 2001; 122 (02) 81-84
  • 36 Güneri EA, Ada E, Ceryan K, Güneri A. High-resolution computed tomographic evaluation of the cochlear capsule in otosclerosis: relationship between densitometry and sensorineural hearing loss. Ann Otol Rhinol Laryngol 1996; 105 (08) 659-664
  • 37 Marx M, Lagleyre S, Escudé B. et al. Correlations between CT scan findings and hearing thresholds in otosclerosis. Acta Otolaryngol 2011; 131 (04) 351-357 DOI: 10.3109/00016489.2010.549841.
  • 38 Kiyomizu K, Tono T, Yang D, Haruta A, Kodama T, Komune S. Correlation of CT analysis and audiometry in Japanese otosclerosis. Auris Nasus Larynx 2004; 31 (02) 125-129 DOI: 10.1016/j.anl.2004.01.006.
  • 39 Ukkola-Pons E, Ayache D, Pons Y, Ratajczak M, Nioche C, Williams M. Oval window niche height: quantitative evaluation with CT before stapes surgery for otosclerosis. AJNR Am J Neuroradiol 2013; 34 (05) 1082-1085
  • 40 Parra C, Trunet S, Granger B. et al. Imaging Criteria to Predict Surgical Difficulties During Stapes Surgery. Otol Neurotol 2017; 38 (06) 815-821 DOI: 10.1097/MAO.0000000000001417.
  • 41 Raman R, Mathew J, Idikula J. Obliterative otosclerosis. J Laryngol Otol 1991; 105 (11) 899-900
  • 42 Veillon F. Imagerie de l'oreille . Paris: Médecine - Sciences Flammarion; 1991
  • 43 Krouchi L, Callonnec F, Bouchetemblé P, Tollard E, Dehesdin D, Marie JP. Preoperative computed tomography scan may fail to predict perilymphatic gusher. Ann Otol Rhinol Laryngol 2013; 122 (06) 374-377 DOI: 10.1177/000348941312200605.
  • 44 Ungar OJ, Handzel O, Cavel O, Oron Y. Superior semicircular canal dehiscence with concomitant otosclerosis-A literature review and case discussion. Clin Case Rep 2018; 6 (12) 2364-2370 DOI: 10.1002/ccr3.1822.
  • 45 Wang F, Yoshida T, Shimono M. et al. Significance of internal auditory canal diverticula in ears with otosclerosis. Acta Otolaryngol 2018; 138 (12) 1066-1069 DOI: 10.1080/00016489.2018.1521526.
  • 46 Puac P, Rodríguez A, Lin HC. et al. Cavitary plaques in otospongiosis: CT findings and clinical implications. AJNR Am J Neuroradiol 2018; 39 (06) 1135-1139 DOI: 10.3174/ajnr.A5613.
  • 47 Shim YJ, Bae YJ, An GS. et al. Involvement of the Internal Auditory Canal in Subjects With Cochlear Otosclerosis: A Less Acknowledged Third Window That Affects Surgical Outcome. Otol Neurotol 2019; 40 (03) e186-e190 DOI: 10.1097/MAO.0000000000002144.
  • 48 Silbergleit R, Quint DJ, Mehta BA, Patel SC, Metes JJ, Noujaim SE. The persistent stapedial artery. AJNR Am J Neuroradiol 2000; 21 (03) 572-577 DOI: 10.1097/00129492-200111000-00044.
  • 49 McElveen Jr JT, Kutz Jr JW. Controversies in the Evaluation and Management of Otosclerosis. Otolaryngol Clin North Am 2018; 51 (02) 487-499 DOI: 10.1016/j.otc.2017.11.017.
  • 50 Sone M, Yoshida T, Sugimoto S. et al. Magnetic resonance imaging evaluation of endolymphatic hydrops andpost-operative findings in cases with otosclerosis. Acta Otolaryngol 2017; 137 (03) 242-245 DOI: 10.1080/00016489.2016.1232862.
  • 51 Lombardo F, De Cori S, Aghakhanyan G. et al. 3D-Flair sequence at 3T in cochlear otosclerosis. Eur Radiol 2016; 26 (10) 3744-3751 DOI: 10.1007/s00330-015-4170-9.
  • 52 Berrettini S, Lombardo F, Bruschini L. et al. 3D fluid attenuated inversion recovery (FLAIR) magnetic resonance imaging at different stages of otosclerosis. Eur Arch Otorhinolaryngol 2018; 275 (11) 2643-2652 DOI: 10.1007/s00405-018-5093-2.
  • 53 Vicente Ade O, Yamashita HK, Cruz OLM, Suzuki FB, Penido Nde O. The effectiveness of audiometric evaluation in drug treatment for otospongiosis. Rev Bras Otorrinolaringol (Engl Ed) 2012; 78 (02) 73-79 DOI: 10.1590/S1808-86942012000200012.
  • 54 de Oliveira Vicente A, Chandrasekhar SS, Yamashita HK, Cruz OLM, Barros FA, Penido NO. Magnetic resonance imaging in the evaluation of clinical treatment of otospongiosis: a pilot study. Otolaryngol Head Neck Surg 2015; 152 (06) 1119-1126 DOI: 10.1177/0194599815574698.
  • 55 Vandevoorde A, Williams MT, Ukkola-Pons E, Daval M, Ayache D. Early Postoperative Imaging of the Labyrinth by Cone Beam CT After Stapes Surgery for Otosclerosis With Correlation to Audiovestibular Outcome. Otol Neurotol 2017; 38 (02) 168-172 DOI: 10.1097/MAO.0000000000001306.
  • 56 Yehudai N, Masoud S, Most T, Luntz M. Depth of stapes prosthesis in the vestibule: baseline values and correlation with stapedectomy outcome. Acta Otolaryngol 2010; 130 (08) 904-908 DOI: 10.3109/00016480903555424.
  • 57 Fang Y, Wang B, Galvin III JJ. et al. MPR-CT Imaging for Stapes Prosthesis: Accuracy and Clinical Significance. Otol Neurotol 2016; 37 (04) 321-323
  • 58 Warren FM, Riggs S, Wiggins III RH. Computed tomographic imaging of stapes implants. Otol Neurotol 2008; 29 (05) 586-592 DOI: 10.1097/MAO.0b013e3181758e96.
  • 59 Bajin MD, Mocan BÖ, Saraç S, Sennaroğlu L. Early computed tomography findings of the inner ear after stapes surgery and its clinical correlations. Otol Neurotol 2013; 34 (04) 639-643 DOI: 10.1097/MAO.0b013e31828be1ab.
  • 60 Williams MT, Ayache D. Imaging of the postoperative middle ear. Eur Radiol 2004; 14 (03) 482-495 DOI: 10.1007/s00330-003-2198-8.
  • 61 Ayache D, Lejeune D, Williams MT. Imaging of postoperative sensorineural complications of stapes surgery: a pictorial essay. Adv Otorhinolaryngol 2007; 65: 308-313
  • 62 Whetstone J, Nguyen A, Nguyen-Huynh A, Hamilton BE. Surgical and clinical confirmation of temporal bone CT findings in patients with otosclerosis with failed stapes surgery. AJNR Am J Neuroradiol 2014; 35 (06) 1195-1201